Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Oecologia ; 192(4): 929-937, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32172377

RESUMO

All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult stage, due to the initial mycoheterotrophy during germination. Although other green plants, such as gentian species, also produce numerous minute seeds, whose germination may depend on fungal associations to meet C demands, physiological evidence for partial mycoheterotrophy in the adult stage is lacking for most candidate taxa. Here, we compared the natural abundances of 13C and 15N isotopes in the AM-associated gentian species Pterygocalyx volubilis growing in high-light-intensity habitats with those of co-occurring autotrophic C3 and C4 plants and AM fungal spores. We found that P. volubilis was significantly enriched in 13C compared with the surrounding C3 plants, which suggests the transfer of some C from the surrounding autotrophic plants through shared AM networks. In addition, the intermediate δ15N values of P. volubilis, between those of autotrophic plants and AM fungal spores, provide further evidence for partial mycoheterotrophy in P. volubilis. Although it is often considered that light deficiency selects partial mycoheterotrophy, we show that partial mycoheterotrophy in AM-forming plants can evolve even under light-saturated conditions. The fact that there have been relatively few descriptions of partial mycoheterotrophy in AM plants may not necessarily reflect the rarity of such associations. In conclusion, partial mycoheterotrophy in AM plants may be more common than hitherto believed.


Assuntos
Gentiana , Micorrizas , Orchidaceae , Isótopos de Carbono , Pradaria , Simbiose
3.
Data Brief ; 18: 1734-1739, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904673

RESUMO

The data presented in this paper is supporting the research article "Variable seed behavior increases recruitment success of a hardwood tree, Zelkova serrata, in spatially heterogeneous forest environments" (Oyama et al., 2018) [1]. We provided the data of several ecological properties of the two types of the seeds (i.e. shoot seeds vs. single seeds) with distinctly different dispersal behaviors. We provide data of terminal velocity, which was measured by releasing 50 replicates of each seed type from a height of 5.0 m in dead air space in a gymnasium. We also show the data of germination cue [i.e. red:far-red (R:FR) ratios], which was examined in plant growth chambers that received three distinct R:FR ratios (0.1, 0.4, and 1.0; 16 h photoperiod) or no illumination. Further, we show the data of the rates of multi-locus outcrossing rates and biparental inbreeding in each of single- and shoot seeds. The mating system parameters were estimated by assaying a total of 80 shoot seeds and 70 single seeds that were randomly collected from Parent 1 and Parent 2 for five microsatellite loci. Finally, we show the data of hemispherical canopy photographs, which were taken at different distance from the adults using a digital camera equipped with a fisheye lens.

4.
Ecol Evol ; 8(3): 1746-1757, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435249

RESUMO

Despite the advantage of plant clonality in patchy environments, studies focusing on genet demography in relation to spatially heterogeneous environments remain scarce. Regeneration of bamboos in forest understoreys after synchronous die-off provides an opportunity for assessing how they come to proliferate across heterogeneous light environments. In a Japanese forest, we examined genet demography of a population of Sasa kurilensis over a 7-year period starting 10 years after die-off, shortly after which some genets began spreading horizontally by rhizomes. The aboveground biomass was estimated, and genets were discriminated in 9-m2 plots placed under both canopy gaps and closed canopies. Overall, the results suggest that the survival and spread of more productive genets and the spatial expansion of genets into closed canopies underlie the proliferation of S. kurilensis. Compared to canopy gaps, the recovery rate of biomass was much slower under closed canopies for the first 10 years after the die-off, but became accelerated during the next 7 years. Genet survival was greater for more productive genets (with greater initial number of culms), and the spaces occupied by genets that died were often colonized afterward by clonal growth of surviving genets. The number of genets decreased under canopy gaps due to greater mortality, but increased under closed canopies where greater number of genets colonized clonally from outside the plots than genets died. The colonizing genets were more productive (having larger culms) than those originally germinated within the plots, and the contribution of colonizing genets to the biomass was greater under closed canopies. Our study emphasizes the importance of investigating genet dynamics over relevant spatiotemporal scales to reveal processes underlying the success of clonal plants in heterogeneous habitats.

5.
Ann Bot ; 114(5): 1035-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25228034

RESUMO

BACKGROUND AND AIMS: Although many studies have reported that clonal growth interferes with sexual reproduction as a result of geitonogamous self-pollination and inbreeding depression, the mating costs of clonal growth are expected to be reduced when genets are spatially intermingled with others. This study examined how clonal growth affects both female and male reproductive success by studying a population of a mass-flowering plant, Sasa veitchii var. hirsuta, with a high degree of clonal intermingling. METHODS: In a 10 × 10 m plot, genets were discriminated based on the multilocus genotypes of 11 nuclear microsatellite loci. The relationships between genet size and the components of reproductive success were then investigated. Male siring success and female and male selfing rates were assessed using paternity analysis. KEY RESULTS: A total of 111 genets were spatially well intermingled with others. In contrast to previous studies with species forming distinct monoclonal patches, seed production linearly increased with genet size. While male siring success was a decelerating function of genet size, selfing rates were relatively low and not related to genet size. CONCLUSIONS: The results, in conjunction with previous studies, emphasize the role of the spatial arrangement of genets on both the quantity and quality of offpsring, and suggest that an intermingled distribution of genets can reduce the mating costs of clonal growth and enhance overall fitness, particularly female fitness.


Assuntos
Poaceae/fisiologia , Sementes/fisiologia , Estruturas Genéticas , Genética Populacional , Genótipo , Endogamia , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Polinização , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento
6.
Oecologia ; 175(1): 163-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522547

RESUMO

An increasing number of studies have shown that genetic diversity within plant species can influence important ecological processes. Here, we report a two-year wetland mesocosm experiment in which genotypic richness of Phragmites australis was manipulated to examine its effects on primary productivity and nitrogen removal from water. We used six genotypes of P. australis, and compared primary productivity and nitrogen concentration in the outflow water of the mesocosms between monocultures and polycultures of all six genotypes. We also quantified the abundance of denitrifying bacteria, as denitrification is a primary mechanism of nitrogen removal in addition to the biotic uptake by P. australis. Plant productivity was significantly greater in genotypic polycultures compared to what was expected based on monocultures. This richness effect on productivity was driven by both complementary and competitive interactions among genotypes. In addition, nitrogen removal rates of mesocosms were generally greater in genotypic polycultures compared to those expected based on monocultures. This effect, particularly pronounced in autumn, may largely be attributable to the enhanced uptake of nitrogen by P. australis, as the abundance of nitrite reducers did not increase with plant genotypic diversity. Although our effect sizes were relatively small compared to previous experiments, our study emphasizes the effect of genotypic interactions in regulating multiple ecological processes.


Assuntos
Variação Genética , Poaceae/genética , Qualidade da Água , Áreas Alagadas , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biomassa , Desnitrificação , Genótipo , Nitrogênio/química , Poaceae/crescimento & desenvolvimento , Água/química
7.
Oecologia ; 162(4): 903-11, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19921520

RESUMO

Many plant species currently exist in fragmented populations of different sizes, while they also experience unpredictable climatic fluctuation over time. However, we still understand little about how plant demography responds to such spatial and temporal environmental variability. We studied population dynamics of an understory perennial herb Trillium camschatcense in the Tokachi plain of Hokkaido, Japan, where a significant effect of forest fragmentation on seedling recruitment was previously reported. Four populations across a range of fragment sizes were studied for 6 years, and the data were analyzed using matrix population models. Per capita fecundity (the number of recruits per plant) varied greatly among populations, but the variation in population growth rates (lambda) was mainly driven by the variation in stasis and growth rates, suggesting that the general trend of reduced fecundity in fragmented populations may not be readily translated into subsequent dynamics. Temporal variation in lambda among years was more than 2 times larger than spatial variation among populations, and this result was likely attributable to the contrasting response of correlation structures among demographic rates. The among-population variation in lambda was dampened by negative covariation between matrix elements possibly due to density-dependent regulation as well as an inherent constraint that some elements are not independent, whereas positive covariation between matrix elements resulted in large temporal variation in lambda. Our results show that population dynamics responded differently to habitat fragmentation and temporal variability of the environment, emphasizing the need to discriminate these spatial and temporal variations in demographic models. Although no populations were projected to be declining in stochastic simulations, correlation between current habitat size and plant density implies historical lambda is positively related to habitat size.


Assuntos
Ecossistema , Trillium/fisiologia , Cidades , Japão , Modelos Biológicos , Dinâmica Populacional , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Fatores de Tempo , Árvores/fisiologia , Trillium/crescimento & desenvolvimento
8.
Oecologia ; 162(2): 371-81, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19865832

RESUMO

Genetic diversity within species is a potentially important, but poorly studied, determinant of plant community dynamics. Here we report experiments testing the influence of genotype identity and genotypic diversity both on the invasibility of a foundation, matrix-forming species (Kentucky bluegrass, Poa pratensis), and on the invasiveness of a colonizing species (dandelion, Taraxacum officinale). Genotypes of Kentucky bluegrass in monoculture showed significant variation in productivity and resistance to dandelion invasion, but the productivity and invasion resistance of genotypic mixtures were not significantly different from those of genotypic monocultures. Indirect evidence suggested temporal shifts in the genotypic composition of mixtures. Dandelion genotypes in monoculture showed striking and significant variation in productivity and seed production, but there was no significant tendency for these variables in mixtures to deviate from null expectations based on monocultures. However, productivity and seed production of dandelion mixtures were consistently greater than those of the two least productive genotypes, and statistically indistinguishable from those of the three most productive genotypes, suggesting the possibility of greater invasiveness of genotypically diverse populations in the long run due to dominance by highly productive genotypes. In both experiments, the identity of genotypes was far more important than genetic diversity per se.


Assuntos
Genótipo , Poa/genética , Taraxacum/genética , Variação Genética , Poa/crescimento & desenvolvimento , Dinâmica Populacional , Sementes/genética , Sementes/crescimento & desenvolvimento , Taraxacum/crescimento & desenvolvimento
9.
Mol Ecol ; 18(18): 3918-28, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19732332

RESUMO

Recent human activities have spread numerous plant species across the globe, yet it is unclear to what degree historical human activities influenced plant dispersal. In western North America, Camassia quamash was one of the most important food plants for indigenous peoples, who transported its propagules either intentionally or accidentally. We investigated how human and natural dispersal might have contributed to the current pattern of spatial genetic structure in C. quamash by performing phylogeographical surveys at two geographical scales. We sequenced two noncoding regions of chloroplast deoxyribonucleic acid (DNA) in 226 individuals from 53 populations of C. quamash as well as 126 individuals from 21 populations of the non-food plant Zigadenus venenosus. Contrary to the expectation of anthropogenic transport, C. quamash populations did not exhibit weaker genetic structure than Z. venenosus populations. We also failed to find convincing evidence for signatures of transport. Instead, our data showed strong effects of past glaciation and geographical barriers of the mountains in the Cascade Range, Olympic Peninsula and Vancouver Island. West of the Cascades, the species appears to have largely migrated northward from a southern refugium after deglaciation, whereas few populations having a highly divergent haplotype might have survived in southwestern Washington. Our data suggest that despite substantial ethnobotanical evidence for anthropogenic transport, the current pattern of genetic structure of C. quamash does not show any detectable signatures of transport by indigenous peoples and is better understood as the result of natural dispersal processes.


Assuntos
Asparagaceae/genética , Evolução Molecular , Genética Populacional , Filogenia , DNA de Cloroplastos/genética , DNA de Plantas/genética , Variação Genética , Geografia , Haplótipos , Humanos , América do Norte , Dinâmica Populacional , Análise de Sequência de DNA
10.
J Hered ; 98(4): 367-72, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17611258

RESUMO

Spatial genetic structure (SGS) within populations was analyzed for the ling-lived understory perennial herb Trillium camschatcense using allozyme loci. We used Sp statistics to compare SGS between 2 life-history stages, juveniles (J) and reproductives (R), as well as between 2 populations, continuous and fragmented, with different habitat conditions. In the continuous population, significant SGS was detected in both stages but the extent was greatly reduced with the progress of the stage (J, Sp = 0.0475; R, Sp = 0.0053). We inferred that limited seed dispersal and subsequent random loss of individuals from the family patches are responsible for the J and R stage structures, respectively. The fragmented population differed in the patterns of SGS; significant structure was detected in the R stage, but not in the J stage (J, Sp = 0.0021; R, Sp = 0.0165) despite significant positive inbreeding coefficients (J, F(IS) = 0.251). The observed differences in the J-stage structures between populations may be explained by habitat fragmentation effects because reduced recruitment in the fragmented population prevents the development of maternal sibling cohort. Such comparative analysis between populations and life-history stages can be useful to understand the different underlying causes of SGS.


Assuntos
Mapeamento Cromossômico , Fluxo Gênico , Variação Genética , Trillium/genética , Geografia , Endogamia
11.
J Plant Res ; 117(1): 13-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15002490

RESUMO

Plant clonality may greatly reduce effective population size and influence management strategies of rare and endangered species. We examined genetic diversity and the extent of clonality in four populations of the monotypic herbaceous perennial Japonolirion osense, which is one of the most rare flowering plants in Japan. Allozyme analysis revealed moderate levels of genetic variation, and the proportion of polymorphic loci (P=66.7%) was higher than the value for species with similar life-history traits. With four polymorphic loci, 19 multilocus genotypes were observed among 433 aerial shoot samples and 10 (52%) were found only in single populations. The proportion of distinguishable genotypes (PD=0.10) and Simpson's index of diversity (D=0.52) also exhibited moderate levels of genotypic diversity compared to other clonal plants, with genotype frequencies at Hardy-Weinberg equilibrium. The distributions of genotypes were often localized and they were mostly found within a radius of 5 m. Spatial autocorrelation analysis showed that shoot samples located 4 m apart were expected to be genetically independent. The results suggest that the spatial extent of genets was relatively narrow and thus the clonality was not extensive.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Liliaceae/genética , Diploide , Genótipo , Geografia , Isoenzimas/genética , Japão , Liliaceae/classificação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Brotos de Planta/genética , Plantas Medicinais/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA