Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 6(18): 5449-5462, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35767737

RESUMO

Recanalization with restored cerebral perfusion is the primary goal of thrombolytic therapy in acute ischemic stroke. The identification of adjunctive therapies that can be safely used to enhance thrombolysis in stroke remains an elusive goal. We report here the development of a mouse in situ carotid artery thrombolysis (iCAT) stroke model involving graded cerebral ischemia to induce unihemispheric infarction after thrombotic occlusion of the common carotid artery (CCA). Electrolytic-induced thrombotic occlusion of the left CCA enabled real-time assessment of recanalization and rethrombosis events after thrombolysis with recombinant tissue-type plasminogen activator (rtPA). Concurrent transient stenosis of the right CCA induced unihemispheric hypoperfusion and infarction in the left middle cerebral artery territory. Real-time assessment of thrombolysis revealed recanalization rates <30% in rtPA-treated animals with high rates of rethrombosis. Addition of the direct thrombin inhibitor argatroban increased recanalization rates to 50% and reduced rethrombosis. Paradoxically, this was associated with increased cerebral ischemia and stroke-related mortality (25%-42%). Serial analysis of carotid and cerebral blood flow showed that coadministration of argatroban with rtPA resulted in a marked increase in carotid artery embolization, leading to distal obstruction of the middle cerebral artery. Real-time imaging of carotid thrombi revealed that adjunctive anticoagulation destabilized platelet-rich thrombi at the vessel wall, leading to dislodgement of large platelet emboli. These studies confirm the benefits of anticoagulants in enhancing thrombolysis and large artery recanalization; however, at high levels of anticoagulation (∼3-fold prolongation of activated partial thromboplastin time), this effect is offset by increased incidence of carotid artery embolization and distal middle cerebral artery occlusion. The iCAT stroke model should provide important new insight into the effects of adjunctive antithrombotic agents on real-time thrombus dynamics during thrombolysis and their correlation with stroke outcomes.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Tromboembolia , Animais , Anticoagulantes/uso terapêutico , Antitrombinas/uso terapêutico , Arginina/análogos & derivados , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Artéria Carótida Primitiva , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Ácidos Pipecólicos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Sulfonamidas , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
2.
J Neuroinflammation ; 16(1): 116, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153377

RESUMO

BACKGROUND: Microglia and CNS-infiltrating monocytes/macrophages (CNS-MPs) perform pro-inflammatory and protective anti-inflammatory functions following ischemic stroke. Selective inhibition of pro-inflammatory responses can be achieved by Kv1.3 channel blockade, resulting in a lower infarct size in the transient middle cerebral artery occlusion (tMCAO) model. Whether beneficial effects of Kv1.3 blockers are mediated by targeting microglia or CNS-infiltrating monocytes/macrophages remains unclear. METHODS: In the 30-min tMCAO mouse model, we profiled functional cell-surface Kv1.3 channels and phagocytic properties of acutely isolated CNS-MPs at various timepoints post-reperfusion. Kv1.3 channels were flow cytometrically detected using fluorescein-conjugated Kv1.3-binding peptide ShK-F6CA as well as by immunohistochemistry. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was performed to measure Kv1.3 (Kcna3) and Kir2.1 (Kcnj2) gene expression. Phagocytosis of 1-µm microspheres by acutely isolated CNS-MPs was measured by flow cytometry. RESULTS: In flow cytometric assays, Kv1.3 channel expression by CD11b+ CNS-MPs was increased between 24 and 72 h post-tMCAO and decreased by 7 days post-tMCAO. Increased Kv1.3 expression was restricted to CD11b+CD45lowLy6clow (microglia) and CD11b+CD45highLy6Clow CNS-MPs but not CD11b+CD45highLy6chigh inflammatory monocytes/macrophages. In immunohistochemical studies, Kv1.3 protein expression was increased in Iba1+ microglia at 24-48 h post-tMCAO. No change in Kv1.3 mRNA in CNS-MPs was observed following tMCAO. CONCLUSIONS: We conclude that resident microglia and a subset of CD45highLy6clow CNS-MPs are the likely cellular targets of Kv1.3 blockers and the delayed phase of neuroinflammation is the optimal therapeutic window for Kv1.3 blockade in ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Canal de Potássio Kv1.3/biossíntese , Fagócitos/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Expressão Gênica , Canal de Potássio Kv1.3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Fatores de Tempo
3.
PLoS One ; 11(4): e0152898, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077372

RESUMO

BACKGROUND: Early recanalization of large cerebral vessels in ischemic stroke is associated with improved clinical outcome, however persisting hypoperfusion leads to poor clinical recovery despite large vessel recanalization. Limited experimental sonothrombolysis studies have shown that addition of microbubbles during treatment can improve microvascular patency. We aimed to determine the effect of two different microbubble formulations on microvascular patency in a rat stroke model. METHODS: We tested BR38 and SonoVue® microbubble-enhanced sonothrombolysis in Wistar rats submitted to 90-minute filament occlusion of the middle cerebral artery. Rats were randomized to treatment (n = 6/group): control, rt-PA, or rt-PA+3-MHz ultrasound insonation with BR38 or SonoVue® at full or 1/3 dose. Treatment duration was 60 minutes, beginning after withdrawal of the filament, and sacrifice was immediately after treatment. Vascular volumes were evaluated with microcomputed tomography. RESULTS: Total vascular volume of the ipsilateral hemisphere was reduced in control and rt-PA groups (p<0.05), but was not significantly different from the contralateral hemisphere in all microbubble-treated groups (p>0.1). CONCLUSIONS: Microbubble-enhanced sonothrombolysis improves microvascular patency. This effect is not dose- or microbubble formulation-dependent suggesting a class effect of microbubbles promoting microvascular reopening. This study demonstrates that microbubble-enhanced sonothrombolysis may be a therapeutic strategy for patients with persistent hypoperfusion of the ischemic territory.


Assuntos
Microbolhas/uso terapêutico , Acidente Vascular Cerebral/terapia , Terapia Trombolítica/métodos , Ondas Ultrassônicas , Animais , Modelos Animais de Doenças , Masculino , Nanotecnologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/diagnóstico por imagem , Ultrassonografia , Microtomografia por Raio-X
4.
J Am Heart Assoc ; 5(2)2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26908405

RESUMO

BACKGROUND: Stroke associated with acute carotid occlusion is associated with poor effectiveness of tissue plasminogen activator (tPA) thrombolysis and poor prognosis. Rupture of atherosclerotic plaques resulting in vascular occlusions may occur on plaques, causing variable stenosis. We hypothesized that degree of stenosis may affect recanalization rates with tPA. Ultrasound+tPA (sonothrombolysis) has been shown to improve recanalization for intracranial occlusions but has not been tested for carotid occlusion. Our primary aim was to determine thrombolytic recanalization rates in a model of occlusion with variable stenosis, with a secondary aim to investigate sonothrombolysis in this model. METHODS AND RESULTS: Rat carotid arteries were crushed and focal stenosis created (25% baseline Doppler flow) with a silk-suture tie invoking thrombosis and occlusion. To model mild or severe stenosis, the tie was released pretreatment or left in place. Animals were treated with tPA (10 mg/kg) or tPA+ultrasound (2-MHz) in each stenosis model (n=7/group). Recanalization was assessed by Doppler flow. Thrombolytic recanalization rates were significantly higher in mild stenosis groups (71% versus 0% with severe stenosis; P<0.0001). Recanalization rates were not significantly higher with additional ultrasound in either model. CONCLUSIONS: In this model, the degree of carotid stenosis had a large effect on thrombolytic recanalization. Sonothrombolysis using standard parameters for intracranial sonothrombolysis did not increase recanalization. Further testing is warranted. The degree of underlying stenosis may be an important predictor of thrombolytic recanalization, and clinical correlation of these findings may provide new approaches to treatment selection for patients with carotid occlusion.


Assuntos
Artérias Carótidas/efeitos dos fármacos , Estenose das Carótidas/tratamento farmacológico , Fibrinolíticos/administração & dosagem , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/administração & dosagem , Terapia por Ultrassom , Grau de Desobstrução Vascular/efeitos dos fármacos , Animais , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiopatologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/fisiopatologia , Constrição Patológica , Modelos Animais de Doenças , Masculino , Ratos Wistar , Fluxo Sanguíneo Regional , Índice de Gravidade de Doença , Fatores de Tempo , Ultrassonografia Doppler
5.
J Cereb Blood Flow Metab ; 35(12): 2109, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621060

RESUMO

Correction to: Journal of Cerebral Blood Flow & Metabolism (2015) 35, 592­600; doi:10.1038/jcbfm.2014.230; published online 17 December 2014. Following the publication of this article, the authors noticed the following error: The Results section of the article contains a typographical error under subheading 'Study III-Effect of Mild Hypothermia, Hematoxylin and Eosin Edema'. . The edema volumes of '3.1±0.65 mm3 versus 27.9±6.5 mm3' should read '0.7±1.2 mm3 versus 6.5 ± 9.2 mm3.'

6.
Sci Rep ; 5: 16026, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522691

RESUMO

Tissue plasminogen activator (tPA) is the only approved thrombolytic therapy for acute ischemic stroke, yet many patients do not recanalize. Enhancing thrombolytic efficacy of tPA is a major focus of stroke research. Traditionally, a "rat dose" of 10 mg/kg has been used in rodent models. Recent studies suggested that the clinical "human" dose (0.9 mg/kg) may better mimic clinical recanalization. These studies only compared the rat and clinical doses, and so we aimed to test recanalization efficacy of multiple tPA doses ranging from 0.9 to 10 mg/kg in a model of endothelial injury and vessel stenosis. The common carotid artery of rats was crushed and stenosed to allow in-situ occlusive thrombus formation (Folt's model of 'physiological' thrombus). Intravenous tPA was administered 60 minutes post-occlusion (n = 6-7/group). Sustained recanalization rates were 0%, 17%, 67% and 71%, for 0.9, 1.8, 4.5, and 10 mg/kg, respectively. Median time to sustained recanalization onset decreased with increasing dosage. We conclude that 10 mg/kg of tPA is too effective, whereas 0.9 mg/kg is ineffective for lysis of occlusive thrombi formed in situ. Neither dose mimics clinical tPA responses. A dose of 2x the clinical dose is a more appropriate mimic of clinical tPA recanalization in this model.


Assuntos
Arteriopatias Oclusivas/tratamento farmacológico , Artérias Carótidas/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Arteriopatias Oclusivas/metabolismo , Artérias Carótidas/metabolismo , Transtornos Cerebrovasculares/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Masculino , Ratos , Ratos Wistar , Acidente Vascular Cerebral/metabolismo , Terapia Trombolítica/métodos , Trombose/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-25657829

RESUMO

BACKGROUND: Early recanalization of occluded vessels in stroke is closely associated with improved clinical outcome. Microbubble-enhanced sonothrombolysis is a promising therapy to improve recanalization rates and reduce the time to recanalization. Testing any thrombolytic therapy requires a model of thromboembolic stroke, but to date these models have been highly variable with regards to clot stability. Here, we developed a model of thromboembolic stroke in rats with site-specific delivery of platelet-rich clots (PRC) to the main stem of the middle cerebral artery (MCA). This model was used in a subsequent study to test microbubble-enhanced sonothrombolysis. METHODS: In Study 1 we investigated spontaneous recanalization rates of PRC in vivo over 4 hours and measured infarct volumes at 24 hours. In Study 2 we investigated tPA-mediated thrombolysis and microbubble-enhanced sonothrombolysis in this model. RESULTS: Study 1 demonstrated stable occlusion out to 4 hours in 5 of 7 rats. Two rats spontaneously recanalized at 40 and 70 minutes post-embolism. Infarct volumes were not significantly different in recanalized rats, 43.93 ± 15.44% of the ischemic hemisphere, compared to 48.93 ± 3.9% in non-recanalized animals (p = 0.7). In Study 2, recanalization was not observed in any of the groups post-treatment. CONCLUSIONS: Site specific delivery of platelet rich clots to the MCA origin resulted in high rates of MCA occlusion, low rates of spontaneous clot lysis and large infarction. These platelet rich clots were highly resistant to tPA with or without microbubble-enhanced sonothrombolysis. This resistance of platelet rich clots to enhanced thrombolysis may explain recanalization failures clinically and should be an impetus to better clot-type identification and alternative recanalization methods.

8.
J Cereb Blood Flow Metab ; 35(4): 592-600, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25515213

RESUMO

In both the human and animal literature, it has largely been assumed that edema is the primary cause of intracranial pressure (ICP) elevation after stroke and that more edema equates to higher ICP. We recently demonstrated a dramatic ICP elevation 24 hours after small ischemic strokes in rats, with minimal edema. This ICP elevation was completely prevented by short-duration moderate hypothermia soon after stroke. Here, our aims were to determine the importance of edema in ICP elevation after stroke and whether mild hypothermia could prevent the ICP rise. Experimental stroke was performed in rats. ICP was monitored and short-duration mild (35 °C) or moderate (32.5 °C) hypothermia, or normothermia (37 °C) was induced after stroke onset. Edema was measured in three studies, using wet-dry weight calculations, T2-weighted magnetic resonance imaging, or histology. ICP increased 24 hours after stroke onset in all normothermic animals. Short-duration mild or moderate hypothermia prevented this rise. No correlation was seen between ΔICP and edema or infarct volumes. Calculated rates of edema growth were orders of magnitude less than normal cerebrospinal fluid production rates. These data challenge current concepts and suggest that factors other than cerebral edema are the primary cause of the ICP elevation 24 hours after stroke onset.


Assuntos
Edema Encefálico/fisiopatologia , Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Hipotermia Induzida , Hipertensão Intracraniana/fisiopatologia , Hipertensão Intracraniana/terapia , Animais , Edema Encefálico/complicações , Isquemia Encefálica/complicações , Hipotermia Induzida/métodos , Hipertensão Intracraniana/etiologia , Masculino , Ratos , Ratos Wistar , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia
9.
PLoS One ; 9(9): e107752, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25248155

RESUMO

Allopregnanolone is a neurosteroid synthesized from progesterone in brain. It increases inhibition through modulation of the gamma-aminobutyric acid type A (GABA-A) receptor. Both agents are putative neuroprotectants after ischemic stroke. We sought to confirm their effectiveness in a hypertensive rat stroke model, with intra- and post-operative temperature regulation. The primary study compared allopregnanolone, progesterone or vehicle control treatments, administered 105 minutes after induction of temporary middle cerebral artery occlusion in spontaneously hypertensive rats. Temperature was controlled intraoperatively and a heat mat used in the 6 hours postoperatively to permit animal temperature self-regulation. The primary outcome was infarct volume and secondary outcomes were tests of sensory and motor function. There was no significant effect of treatment on any outcome measure. Given prior reports of GABA-A receptor agonists causing hypothermia, follow-up experiments were conducted to examine postoperative temperature regulation. These did not reveal a difference in postoperative temperature in neurosteroid-treated animals compared to control. However, in all rats maintained postoperatively in ambient temperature, moderate hypothermia was observed. This was in contrast to rats maintained over a heat mat. The lowest mean postoperative temperature was between 34.4-34.9°C in all 3 groups. These data do not support a neuroprotective effect of allopregnanolone or progesterone in ischemic stroke in hypertensives in the setting of normothermia. Given previous evidence of synergy between neuroprotective agents and hypothermia, demonstration of neuroprotective effect of these agents in the absence of postoperative hypothermia would be prudent before consideration of these agents for further clinical investigation.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Pregnanolona/administração & dosagem , Progesterona/administração & dosagem , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Período Pós-Operatório , Ratos , Ratos Endogâmicos SHR , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA