Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628903

RESUMO

Prostate cancer is typically of acinar adenocarcinoma type but can occasionally present as neuroendocrine and/or ductal type carcinoma. These are associated with clinically aggressive disease, and the former often arises on a background of androgen deprivation therapy, although it can also arise de novo. Two prostate cancer cases were sequenced by exome capture from archival tissue. Case 1 was de novo small cell neuroendocrine carcinoma and ductal adenocarcinoma with three longitudinal samples over 5 years. Case 2 was a single time point after the development of treatment-related neuroendocrine prostate carcinoma. Case 1 showed whole genome doubling in all samples and focal amplification of AR in all samples except the first time point. Phylogenetic analysis revealed a common ancestry for ductal and small cell carcinoma. Case 2 showed 13q loss (involving RB1) in both adenocarcinoma and small cell carcinoma regions, and 3p gain, 4p loss, and 17p loss (involving TP53) in the latter. By using highly curated samples, we demonstrate for the first time that small-cell neuroendocrine and ductal prostatic carcinoma can have a common ancestry. We highlight whole genome doubling in a patient with prostate cancer relapse, reinforcing its poor prognostic nature.


Assuntos
Carcinoma de Células Acinares , Carcinoma Ductal , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias da Próstata/genética , Antagonistas de Androgênios , Filogenia , Carcinoma Ductal/genética , Evolução Molecular
3.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074047

RESUMO

Background: Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases. Methods: We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically 'favourable adiposity' (FA) and 'unfavourable adiposity' (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases. Results: MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism. Conclusions: Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy. Funding: Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute.


Assuntos
Adiposidade/genética , Análise da Randomização Mendeliana/métodos , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Fatores de Risco Cardiometabólico , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
4.
Br J Cancer ; 126(5): 822-830, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34912076

RESUMO

BACKGROUND: Associations between colorectal cancer (CRC) and other health outcomes have been reported, but these may be subject to biases, or due to limitations of observational studies. METHODS: We set out to determine whether genetic predisposition to CRC is also associated with the risk of other phenotypes. Under the phenome-wide association study (PheWAS) and tree-structured phenotypic model (TreeWAS), we studied 334,385 unrelated White British individuals (excluding CRC patients) from the UK Biobank cohort. We generated a polygenic risk score (PRS) from CRC genome-wide association studies as a measure of CRC risk. We performed sensitivity analyses to test the robustness of the results and searched the Danish Disease Trajectory Browser (DTB) to replicate the observed associations. RESULTS: Eight PheWAS phenotypes and 21 TreeWAS nodes were associated with CRC genetic predisposition by PheWAS and TreeWAS, respectively. The PheWAS detected associations were from neoplasms and digestive system disease group (e.g. benign neoplasm of colon, anal and rectal polyp and diverticular disease). The results from the TreeWAS corroborated the results from the PheWAS. These results were replicated in the observational data within the DTB. CONCLUSIONS: We show that benign colorectal neoplasms share genetic aetiology with CRC using PheWAS and TreeWAS methods. Additionally, CRC genetic predisposition is associated with diverticular disease.


Assuntos
Neoplasias Colorretais/patologia , Estudo de Associação Genômica Ampla/métodos , Fenômica/métodos , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Bancos de Espécimes Biológicos , Neoplasias Colorretais/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Reino Unido
5.
Br J Cancer ; 124(7): 1330-1338, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33510439

RESUMO

BACKGROUND: We conducted a Mendelian randomisation (MR) study to investigate whether physical activity (PA) causes a reduction of colorectal cancer risk and to understand the contributions of effects mediated through changes in body fat. METHODS: Common genetic variants associated with self-reported moderate-to-vigorous PA (MVPA), acceleration vector magnitude PA (AMPA) and sedentary time were used as instrumental variables. To control for confounding effects of obesity, we included instrumental variables for body mass index (BMI), body fat percentage, waist circumference and arm, trunk and leg fat ratios. We analysed the effect of these instrumental variables in a colorectal cancer genome-wide association study comprising 31,197 cases and 61,770 controls of European ancestry by applying two-sample and multivariable MR study designs. RESULTS: We found decreased colorectal cancer risk for genetically represented measures of MVPA and AMPA that were additional to effects mediated through genetic measures of obesity. Odds ratio and 95% confidence interval (CI) per standard deviation increase in MVPA and AMPA was 0.56 (0.31, 1.01) and 0.60 (0.41, 0.88), respectively. No association has been found between sedentary time and colorectal cancer risk. The proportion of effect mediated through BMI was 2% (95% CI: 0, 14) and 32% (95% CI: 12, 46) for MVPA and AMPA, respectively. CONCLUSION: These findings provide strong evidence to reinforce public health measures on preventing colorectal cancer that promote PA at a population level regardless of body fatness.


Assuntos
Adiposidade , Índice de Massa Corporal , Neoplasias Colorretais/epidemiologia , Exercício Físico , Análise da Randomização Mendeliana/métodos , Obesidade/complicações , Comportamento Sedentário , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Europa (Continente) , Estudo de Associação Genômica Ampla , Humanos , Obesidade/epidemiologia , Obesidade/genética , Prognóstico , Fatores de Risco
6.
PLoS Biol ; 18(12): e3001030, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320856

RESUMO

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/economia , Humanos , Reação em Cadeia da Polimerase Multiplex/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , SARS-CoV-2/genética
7.
Nature ; 587(7832): 126-132, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32879494

RESUMO

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Assuntos
Instabilidade Cromossômica/genética , Evolução Molecular , Cariótipo , Metástase Neoplásica/genética , Neoplasias/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 8/genética , Células Clonais/metabolismo , Células Clonais/patologia , Ciclina E/genética , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Perda de Heterozigosidade/genética , Masculino , Mutagênese , Metástase Neoplásica/patologia , Neoplasias/patologia , Proteínas Oncogênicas/genética
8.
Int J Cancer ; 147(12): 3431-3437, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32638365

RESUMO

Increasing numbers of common genetic variants associated with colorectal cancer (CRC) have been identified. Our study aimed to determine whether risk prediction based on common genetic variants might enable stratification for CRC risk. Meta-analysis of 11 genome-wide association studies comprising 16 871 cases and 26 328 controls was performed to capture CRC susceptibility variants. Genetic prediction models with several candidate polygenic risk scores (PRSs) were generated from Scottish CRC case-control studies (6478 cases and 11 043 controls) and the score with the best performance was then tested in UK Biobank (UKBB) (4800 cases and 20 287 controls). A weighted PRS of 116 CRC single nucleotide polymorphisms (wPRS116 ) was found with the best predictive performance, reporting a c-statistics of 0.60 and an odds ratio (OR) of 1.46 (95% confidence interval [CI] = 1.41-1.50, per SD increase) in Scottish data set. The predictive performance of this wPRS116 was consistently validated in UKBB data set with c-statistics of 0.61 and an OR of 1.49 (95% CI = 1.44-1.54, per SD increase). Modeling the levels of PRS with age and sex in the general UK population shows that employing genetic risk profiling can achieve a moderate degree of risk discrimination that could be helpful to identify a subpopulation with higher CRC risk due to genetic susceptibility.


Assuntos
Neoplasias Colorretais/epidemiologia , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Modelos Genéticos , Herança Multifatorial
9.
Open Biol ; 10(4): 190297, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289242

RESUMO

One of the great unsolved puzzles in cancer biology is not why cancers occur, but rather explaining why so few cancers occur compared with the theoretical number that could occur, given the number of progenitor cells in the body and the normal mutation rate. We hypothesized that a contributory explanation is that the tumour microenvironment (TME) is not fixed due to factors such as immune cell infiltration, and that this could impair the ability of neoplastic cells to retain a high enough fitness to become a cancer. The TME has implicitly been assumed to be static in most cancer evolution models, and we therefore developed a mathematical model of spatial cancer evolution assuming that the TME, and thus the optimum cancer phenotype, changes over time. Based on simulations, we show how cancer cell populations adapt to diverse changing TME conditions and fitness landscapes. Compared with static TMEs, which generate neutral dynamics, changing TMEs lead to complex adaptations with characteristic spatio-temporal heterogeneity involving variable fitness effects of driver mutations, subclonal mixing, subclonal competition and phylogeny patterns. In many cases, cancer cell populations fail to grow or undergo spontaneous regression, and even extinction. Our analyses predict that cancer evolution in a changing TME is challenging, and can help to explain why cancer is neither inevitable nor as common as expected. Should cancer driver mutations with effects dependent of the TME exist, they are likely to be selected. Anti-cancer prevention and treatment strategies based on changing the TME are feasible and potentially effective.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Microambiente Tumoral , Evolução Molecular , Regulação Neoplásica da Expressão Gênica , Aptidão Genética , Humanos , Modelos Teóricos , Mutação , Fenótipo
10.
Nat Commun ; 11(1): 1959, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313050

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Commun ; 11(1): 1035, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098957

RESUMO

Both normal tissue development and cancer growth are driven by a branching process of cell division and mutation accumulation that leads to intra-tissue genetic heterogeneity. However, quantifying somatic evolution in humans remains challenging. Here, we show that multi-sample genomic data from a single time point of normal and cancer tissues contains information on single-cell divisions. We present a new theoretical framework that, applied to whole-genome sequencing data of healthy tissue and cancer, allows inferring the mutation rate and the cell survival/death rate per division. On average, we found that cells accumulate 1.14 mutations per cell division in healthy haematopoiesis and 1.37 mutations per division in brain development. In both tissues, cell survival was maximal during early development. Analysis of 131 biopsies from 16 tumours showed 4 to 100 times increased mutation rates compared to healthy development and substantial inter-patient variation of cell survival/death rates.


Assuntos
Encéfalo/citologia , Hematopoese/genética , Taxa de Mutação , Neoplasias/genética , Neoplasias/patologia , Análise de Célula Única/métodos , Teorema de Bayes , Divisão Celular , Sobrevivência Celular/genética , Heterogeneidade Genética , Humanos , Modelos Genéticos , Acúmulo de Mutações , Neurônios/citologia , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
12.
Mol Aspects Med ; 69: 41-47, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30710596

RESUMO

Colorectal cancer (CRC) is the third most common cancer in economically developed countries and a major cause of cancer-related mortality. The importance of lifestyle and diet as major determinants of CRC risk is suggested by differences in CRC incidence between countries and in migration studies. Previous observational epidemiological studies have identified associations between modifiable environmental risk factors and CRC, but these studies can be susceptible to reverse causation and confounding, and their results can therefore conflict. Mendelian randomisation (MR) analysis represents an approach complementary to conventional observational studies examining associations between exposures and disease. The MR strategy employs allelic variants as instrumental variables (IVs), which act as proxies for non-genetic exposures. These allelic variants are randomly assigned during meiosis and can therefore inform on life-long exposure, whilst not being subject to reverse causation. In previous studies MR frameworks have associated several modifiable factors with CRC risk, including adiposity, hyperlipidaemia, fatty acid profile and alcohol consumption. In this review we detail the use of MR to investigate and discover CRC risk factors, and its future applications.


Assuntos
Neoplasias Colorretais/etiologia , Suscetibilidade a Doenças , Predisposição Genética para Doença , Neoplasias Colorretais/diagnóstico , Humanos , Análise da Randomização Mendeliana , Medição de Risco , Fatores de Risco
13.
Gut ; 68(6): 985-995, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29991641

RESUMO

OBJECTIVE: IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing. DESIGN: Exome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC. RESULTS: 10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated 'catastrophic' CNA increase. CONCLUSIONS: Evolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection.


Assuntos
Transformação Celular Neoplásica/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transformação Celular Neoplásica/genética , Colonoscopia/métodos , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Medição de Risco , Índice de Gravidade de Doença
14.
Nat Ecol Evol ; 2(10): 1661-1672, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177804

RESUMO

The evolutionary events that cause colorectal adenomas (benign) to progress to carcinomas (malignant) remain largely undetermined. Using multi-region genome and exome sequencing of 24 benign and malignant colorectal tumours, we investigate the evolutionary fitness landscape occupied by these neoplasms. Unlike carcinomas, advanced adenomas frequently harbour sub-clonal driver mutations-considered to be functionally important in the carcinogenic process-that have not swept to fixation, and have relatively high genetic heterogeneity. Carcinomas are distinguished from adenomas by widespread aneusomies that are usually clonal and often accrue in a 'punctuated' fashion. We conclude that adenomas evolve across an undulating fitness landscape, whereas carcinomas occupy a sharper fitness peak, probably owing to stabilizing selection.


Assuntos
Adenoma/genética , Carcinogênese/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Evolução Molecular , Mutação , Adenoma/patologia , Carcinoma/patologia , Neoplasias Colorretais/patologia , Humanos , Modelos Biológicos
15.
Nat Commun ; 9(1): 1857, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748584

RESUMO

Epidemiological evidence has long associated environmental mutagens with increased cancer risk. However, links between specific mutation-causing processes and the acquisition of individual driver mutations have remained obscure. Here we have used public cancer sequencing data from 11,336 cancers of various types to infer the independent effects of mutation and selection on the set of driver mutations in a cancer type. First, we detect associations between a range of mutational processes, including those linked to smoking, ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations across cancer types. Second, we quantify differential selection between well-known alternative driver mutations, including differences in selection between distinct mutant residues in the same gene. These results show that while mutational processes have a large role in determining which driver mutations are present in a cancer, the role of selection frequently dominates.


Assuntos
Análise de Dados , Exposição Ambiental/efeitos adversos , Genoma Humano/genética , Neoplasias/genética , Seleção Genética/genética , Cromossomos Humanos/genética , Reparo de Erro de Pareamento de DNA/genética , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Humanos , Masculino , Mutagênicos/toxicidade , Taxa de Mutação , Neoplasias/etiologia , Oncogenes/genética
16.
Clin Cancer Res ; 24(13): 3197-3203, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29559562

RESUMO

Purpose: Pathogenic POLE proofreading domain mutations are found in many malignancies where they are associated with ultramutation and favorable prognosis. The extent to which this prognosis depends on their sensitivity to adjuvant treatment is unknown, as is the optimal therapy for advanced-staged or recurrent POLE-mutant cancers.Experimental Design: We examined the recurrence-free survival of women with POLE-mutant and POLE-wild-type endometrial cancers (EC) in the observation arm of the randomized PORTEC-1 endometrial cancer trial (N = 245 patients with stage I endometrial cancer for analysis). Sensitivity to radiotherapy and selected chemotherapeutics was compared between Pole-mutant mouse-derived embryonic stem (mES) cells, generated using CRISPR-Cas9 (Pole mutations D275A/E275A, and cancer-associated P286R, S297F, V411L) and isogenic wild-type cell lines.Results: In the observation arm of the PORTEC-1 trial (N = 245), women with POLE-mutant endometrial cancers (N = 16) had an improved recurrence-free survival (10-year recurrence-free survival 100% vs. 80.1% for POLE-wild-type; HR, 0.143; 95% confidence interval, 0.001-0.996; P = 0.049). Pole mutations did not increase sensitivity to radiotherapy nor to chemotherapeutics in mES cells. In contrast, Pole-mutant cells displayed significantly increased sensitivity to cytarabine and fludarabine (IC50Pole P286R-mutant vs. wild-type: 0.05 vs. 0.17 µmol/L for cytarabine, 4.62 vs. 11.1 µmol/L for fludarabine; P < 0.001 for both comparisons).Conclusions: The favorable prognosis of POLE-mutant cancers cannot be explained by increased sensitivity to currently used adjuvant treatments. These results support studies exploring minimization of adjuvant therapy for early-stage POLE-mutant cancers, including endometrial and colorectal cancers. Conversely, POLE mutations result in hypersensitivity to nucleoside analogues, suggesting the use of these compounds as a potentially effective targeted treatment for advanced-stage POLE-mutant cancers. Clin Cancer Res; 24(13); 3197-203. ©2018 AACR.


Assuntos
Biomarcadores Tumorais , DNA Polimerase II/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Domínios e Motivos de Interação entre Proteínas/genética , Tolerância a Radiação/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quimioterapia Adjuvante , DNA Polimerase II/química , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a Poli-ADP-Ribose/química , Prognóstico , Radioterapia Adjuvante , Resultado do Tratamento
17.
Oncoscience ; 2(5): 508-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097884

RESUMO

INTRODUCTION: BRAF mutant colorectal cancer carries a poor prognosis which is thought to be related to poor response to conventional chemotherapy. BRAF mutation is associated with the serrated tumour phenotype. We hypothesised that one of the mechanisms by which BRAF mutant colorectal cancer demonstrate poor outcomes with chemotherapy is abnormal gene methylation. METHODS: The Cancer Genome Atlas (TCGA) methylation data was analysed using a linear regression model with BRAF mutation as an independent variable. Expression datasets were also obtained to correlate functional changes. Top differentially methylated probes were taken forward for validation by methylation pyrosequencing. These probes were analysed on a cohort of patients enriched for BRAF mutations taken from the VICTOR and QUASAR2 studies. RESULTS: In an analysis of 91 tumours (9 BRAF mutant, 82 wild type), the Illumina probe cg11835197 was the probe identified as top differentially methylated (p = 2.56×10-7, Bayes Factor (BF) =6.54). This probe covered a region -413bp from the promoter region of TFAP2E. We found a complex pattern of CpG specific methylation of this region which was associated with both overall (p=0.044) and disease free (p=0.046) survival. DISCUSSION: BRAF mutant tumours may attain part of their chemoresistance from abnormal TFAP2E methylation, which has not previously been described.

18.
J Natl Cancer Inst ; 107(1): 402, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25505230

RESUMO

BACKGROUND: Current risk stratification in endometrial cancer (EC) results in frequent over- and underuse of adjuvant therapy, and may be improved by novel biomarkers. We examined whether POLE proofreading mutations, recently reported in about 7% of ECs, predict prognosis. METHODS: We performed targeted POLE sequencing in ECs from the PORTEC-1 and -2 trials (n = 788), and analyzed clinical outcome according to POLE status. We combined these results with those from three additional series (n = 628) by meta-analysis to generate multivariable-adjusted, pooled hazard ratios (HRs) for recurrence-free survival (RFS) and cancer-specific survival (CSS) of POLE-mutant ECs. All statistical tests were two-sided. RESULTS: POLE mutations were detected in 48 of 788 (6.1%) ECs from PORTEC-1 and-2 and were associated with high tumor grade (P < .001). Women with POLE-mutant ECs had fewer recurrences (6.2% vs 14.1%) and EC deaths (2.3% vs 9.7%), though, in the total PORTEC cohort, differences in RFS and CSS were not statistically significant (multivariable-adjusted HR = 0.43, 95% CI = 0.13 to 1.37, P = .15; HR = 0.19, 95% CI = 0.03 to 1.44, P = .11 respectively). However, of 109 grade 3 tumors, 0 of 15 POLE-mutant ECs recurred, compared with 29 of 94 (30.9%) POLE wild-type cancers; reflected in statistically significantly greater RFS (multivariable-adjusted HR = 0.11, 95% CI = 0.001 to 0.84, P = .03). In the additional series, there were no EC-related events in any of 33 POLE-mutant ECs, resulting in a multivariable-adjusted, pooled HR of 0.33 for RFS (95% CI = 0.12 to 0.91, P = .03) and 0.26 for CSS (95% CI = 0.06 to 1.08, P = .06). CONCLUSION: POLE proofreading mutations predict favorable EC prognosis, independently of other clinicopathological variables, with the greatest effect seen in high-grade tumors. This novel biomarker may help to reduce overtreatment in EC.


Assuntos
Biomarcadores Tumorais/genética , DNA Polimerase II/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/mortalidade , Mutação , Adulto , Intervalo Livre de Doença , Neoplasias do Endométrio/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Gradação de Tumores , Razão de Chances , Proteínas de Ligação a Poli-ADP-Ribose , Valor Preditivo dos Testes , Prognóstico
19.
Hum Mutat ; 35(9): 1136-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980722

RESUMO

Mediator regulates transcription by connecting gene-specific transcription factors to the RNA polymerase II initiation complex. We recently discovered by exome sequencing that specific exon 2 mutations in mediator complex subunit 12 (MED12) are extremely common in uterine leiomyomas. Subsequent screening studies have focused on this mutational hot spot, and mutations have been detected in uterine leiomyosarcomas, extrauterine leiomyomas and leiomyosarcomas, endometrial polyps, and colorectal cancers. All mutations have been missense changes or in-frame insertions/deletions. Here, we have analyzed 611 samples representing all above-mentioned tumor types for possible exon 1 mutations. Five mutations were observed, all of which were in-frame insertion/deletions in uterine leiomyomas. Transcriptome-wide expression data revealed that MED12 exon 1 and exon 2 mutations lead to the same unique global gene expression pattern with RAD51B being the most upregulated gene. Immunoprecipitation and kinase activity assays showed that both exon 1 and exon 2 mutations disrupt the interaction between MED12 and Cyclin C and CDK8/19 and abolish the mediator-associated CDK kinase activity. These results further emphasize the role of MED12 in uterine leiomyomas, show that exon 1 and exon 2 exert their tumorigenic effect in similar manner, and stress that exon 1 should be included in subsequent MED12 screenings.


Assuntos
Éxons , Leiomioma/genética , Complexo Mediador/genética , Mutação , Neoplasias Uterinas/genética , Linhagem Celular , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Leiomioma/patologia , Complexo Mediador/metabolismo , Ligação Proteica , Neoplasias Uterinas/patologia
20.
Cancer Res ; 74(12): 3238-47, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24755471

RESUMO

Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively. Gene expression was defined using RNA-Seq. Cell line data were compared with those published for primary colorectal cancers in The Cancer Genome Atlas. Notably, we found that exome mutation and DNA copy-number spectra in colorectal cancer cell lines closely resembled those seen in primary colorectal tumors. Similarities included the presence of two hypermutation phenotypes, as defined by signatures for defective DNA mismatch repair and DNA polymerase ε proofreading deficiency, along with concordant mutation profiles in the broadly altered WNT, MAPK, PI3K, TGFß, and p53 pathways. Furthermore, we documented mutations enriched in genes involved in chromatin remodeling (ARID1A, CHD6, and SRCAP) and histone methylation or acetylation (ASH1L, EP300, EP400, MLL2, MLL3, PRDM2, and TRRAP). Chromosomal instability was prevalent in nonhypermutated cases, with similar patterns of chromosomal gains and losses. Although paired cell lines derived from the same tumor exhibited considerable mutation and DNA copy-number differences, in silico simulations suggest that these differences mainly reflected a preexisting heterogeneity in the tumor cells. In conclusion, our results establish that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate colorectal cancer biology and drug responses.


Assuntos
Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Neoplasias Colorretais/metabolismo , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Exoma , Dosagem de Genes , Frequência do Gene , Genes Neoplásicos , Humanos , Instabilidade de Microssatélites , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA