Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961277

RESUMO

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

2.
J Bone Miner Res ; 38(2): 326-334, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458982

RESUMO

Proton pump inhibitors (PPIs) are among the most used drugs in the UK. PPI use has been associated with decreased bone mineral density (BMD) and increased fracture risk, although these results have been inconsistent. We hypothesized that PPI could modulate BMD by altering gut and/or host systemic metabolic environments. Using data from more than 5000 British male and female individuals, we confirmed that PPI use is associated with decreased lumbar spine and total hip BMD. This effect was not mediated through the gut microbiome. We suggest here that PPI use may influence total hip BMD, both directly and indirectly, via plasma metabolites involved in the sex hormone pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Densidade Óssea , Fraturas Ósseas , Humanos , Masculino , Feminino , Inibidores da Bomba de Prótons , Vértebras Lombares , Reino Unido
3.
Elife ; 112022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36412098

RESUMO

Background: Ageing is a heterogenous process characterised by cellular and molecular hallmarks, including changes to haematopoietic stem cells and is a primary risk factor for chronic diseases. X chromosome inactivation (XCI) randomly transcriptionally silences either the maternal or paternal X in each cell of 46, XX females to balance the gene expression with 46, XY males. Age acquired XCI-skew describes the preferential selection of cells across a tissue resulting in an imbalance of XCI, which is particularly prevalent in blood tissues of ageing females, and yet its clinical consequences are unknown. Methods: We assayed XCI in 1575 females from the TwinsUK population cohort using DNA extracted from whole blood. We employed prospective, cross-sectional, and intra-twin study designs to characterise the relationship of XCI-skew with molecular and cellular measures of ageing, cardiovascular disease risk, and cancer diagnosis. Results: We demonstrate that XCI-skew is independent of traditional markers of biological ageing and is associated with a haematopoietic bias towards the myeloid lineage. Using an atherosclerotic cardiovascular disease risk score, which captures traditional risk factors, XCI-skew is associated with an increased cardiovascular disease risk both cross-sectionally and within XCI-skew discordant twin pairs. In a prospective 10 year follow-up study, XCI-skew is predictive of future cancer incidence. Conclusions: Our study demonstrates that age acquired XCI-skew captures changes to the haematopoietic stem cell population and has clinical potential as a unique biomarker of chronic disease risk. Funding: KSS acknowledges funding from the Medical Research Council [MR/M004422/1 and MR/R023131/1]. JTB acknowledges funding from the ESRC [ES/N000404/1]. MM acknowledges funding from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, Chronic Disease Research Foundation (CDRF), Zoe Global Ltd and the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.


Assuntos
Doenças Cardiovasculares , Inativação do Cromossomo X , Feminino , Humanos , Masculino , Doenças Cardiovasculares/genética , Estudos Transversais , Seguimentos , Avaliação de Resultados em Cuidados de Saúde , Estudos Prospectivos
4.
Genome Med ; 14(1): 75, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35843982

RESUMO

BACKGROUND: There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. METHODS: Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. RESULTS: We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. CONCLUSIONS: Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.


Assuntos
Resistência à Insulina , Índice de Massa Corporal , Metilação de DNA , Dieta , Epigênese Genética , Epigenoma , Humanos , Resistência à Insulina/genética
5.
Crit Care Explor ; 3(3): e0355, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33655216

RESUMO

Acute hypoxemic respiratory failure is the major complication of coronavirus disease 2019, yet optimal respiratory support strategies are uncertain. We aimed to describe outcomes with high-flow oxygen delivered through nasal cannula and noninvasive positive pressure ventilation in coronavirus disease 2019 acute hypoxemic respiratory failure and identify individual factors associated with noninvasive respiratory support failure. DESIGN: Retrospective cohort study to describe rates of high-flow oxygen delivered through nasal cannula and/or noninvasive positive pressure ventilation success (live discharge without endotracheal intubation). Fine-Gray subdistribution hazard models were used to identify patient characteristics associated with high-flow oxygen delivered through nasal cannula and/or noninvasive positive pressure ventilation failure (endotracheal intubation and/or in-hospital mortality). SETTING: One large academic health system, including five hospitals (one quaternary referral center, a tertiary hospital, and three community hospitals), in New York City. PATIENTS: All hospitalized adults 18-100 years old with coronavirus disease 2019 admitted between March 1, 2020, and April 28, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 331 and 747 patients received high-flow oxygen delivered through nasal cannula and noninvasive positive pressure ventilation as the highest level of noninvasive respiratory support, respectively; 154 (46.5%) in the high-flow oxygen delivered through nasal cannula cohort and 167 (22.4%) in the noninvasive positive pressure ventilation cohort were successfully discharged without requiring endotracheal intubation. In adjusted models, significantly increased risk of high-flow oxygen delivered through nasal cannula and noninvasive positive pressure ventilation failure was seen among patients with cardiovascular disease (subdistribution hazard ratio, 1.82; 95% CI, 1.17-2.83 and subdistribution hazard ratio, 1.40; 95% CI, 1.06-1.84, respectively). Conversely, a higher peripheral blood oxygen saturation to Fio2 ratio at high-flow oxygen delivered through nasal cannula and noninvasive positive pressure ventilation initiation was associated with reduced risk of failure (subdistribution hazard ratio, 0.32; 95% CI, 0.19-0.54, and subdistribution hazard ratio 0.34; 95% CI, 0.21-0.55, respectively). CONCLUSIONS: A significant proportion of patients receiving noninvasive respiratory modalities for coronavirus disease 2019 acute hypoxemic respiratory failure achieved successful hospital discharge without requiring endotracheal intubation, with lower success rates among those with comorbid cardiovascular disease or more severe hypoxemia. The role of high-flow oxygen delivered through nasal cannula and noninvasive positive pressure ventilation in coronavirus disease 2019-related acute hypoxemic respiratory failure warrants further consideration.

6.
J Clin Med ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012659

RESUMO

Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested: random forest (RF), linear support vector machine, and logistic regression. We compared the models' performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity, and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and 244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and AUC-ROC increased 14%. This study found that using machine learning and readily available clinical data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.

7.
Sci Rep ; 9(1): 2239, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783123

RESUMO

Rhododendron ponticum L. is a damaging invasive alien species in Britain, favouring the moist, temperate climate, and the acidic soils of upland areas. It outshades other species and is thought to create a soil environment of low pH that may be higher in phytotoxic phenolic compounds. We investigated native vegetation restoration and R. ponticum regeneration post-clearance using heathland sites within Snowdonia National Park, Wales; one site had existing R. ponticum stands and three were restoring post-clearance. Each site also had an adjacent, uninvaded control for comparison. We assessed whether native vegetation restoration was influenced post-invasion by soil chemical properties, including pH and phytotoxic compounds, using Lactuca sativa L. (lettuce) bioassays supported by liquid chromatography-mass spectroscopy (LC-MSn). Cleared sites had higher shrub and bare ground cover, and lower grass and herbaceous species cover relative to adjacent uninvaded control sites; regenerating R. ponticum was also observed on all cleared sites. No phenolic compounds associated with R. ponticum were identified in any soil water leachates, and soil leachates from cleared sites had no inhibitory effect in L. sativa germination assays. We therefore conclude that reportedly phytotoxic compounds do not influence restoration post R. ponticum clearance. Soil pH however was lower beneath R. ponticum and on cleared sites, relative to adjacent uninvaded sites. The lower soil pH post-clearance may have favoured shrub species, which are typically tolerant of acidic soils. The higher shrub cover on cleared sites may have greater ecological value than unaffected grass dominated sites, particularly given the recent decline in such valuable heathland habitats. The presence of regenerating R. ponticum on all cleared sites however highlights the critical importance of monitoring and re-treating sites post initial clearance.


Assuntos
Pradaria , Espécies Introduzidas , Lactuca/metabolismo , Rhododendron/metabolismo , Conservação dos Recursos Naturais
8.
AMIA Jt Summits Transl Sci Proc ; 2017: 108-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888052

RESUMO

Currently, drug discovery approaches focus on the design of therapies that alleviate an index symptom by reengineering the underlying biological mechanism in agonistic or antagonistic fashion. For example, medicines are routinely developed to target an essential gene that drives the disease mechanism. Therapeutic overloading where patients get multiple medications to reduce the primary and secondary side effect burden is standard practice. This single-symptom based approach may not be scalable, as we understand that diseases are more connected than random and molecular interactions drive disease comorbidities. In this work, we present a proof-of-concept drug discovery strategy by combining network biology, disease comorbidity estimates, and computational drug repositioning, by targeting the risk factors and comorbidities of peripheral artery disease, a vascular disease associated with high morbidity and mortality. Individualized risk estimation and recommending disease sequelae based therapies may help to lower the mortality and morbidity of peripheral artery disease.

9.
Brief Bioinform ; 19(4): 656-678, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28200013

RESUMO

Increase in global population and growing disease burden due to the emergence of infectious diseases (Zika virus), multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting and improves the productivity of drug development. As the number of drug repurposing investigations increases, a new opportunity has emerged to understand factors driving drug repositioning through systematic analyses of drugs, drug targets and associated disease indications. However, such analyses have so far been hampered by the lack of a centralized knowledgebase, benchmarking data sets and reporting standards. To address these knowledge and clinical needs, here, we present RepurposeDB, a collection of repurposed drugs, drug targets and diseases, which was assembled, indexed and annotated from public data. RepurposeDB combines information on 253 drugs [small molecules (74.30%) and protein drugs (25.29%)] and 1125 diseases. Using RepurposeDB data, we identified pharmacological (chemical descriptors, physicochemical features and absorption, distribution, metabolism, excretion and toxicity properties), biological (protein domains, functional process, molecular mechanisms and pathway cross talks) and epidemiological (shared genetic architectures, disease comorbidities and clinical phenotype similarities) factors mediating drug repositioning. Collectively, RepurposeDB is developed as the reference database for drug repositioning investigations. The pharmacological, biological and epidemiological principles of drug repositioning identified from the meta-analyses could augment therapeutic development.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Doença , Descoberta de Drogas , Reposicionamento de Medicamentos , Proteínas/metabolismo , Humanos , Epidemiologia Molecular , Proteínas/genética
10.
BMJ Open ; 6(3): e010579, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27013597

RESUMO

OBJECTIVE: To design, develop and prototype clinical dashboards to integrate high-frequency health and wellness data streams using interactive and real-time data visualisation and analytics modalities. MATERIALS AND METHODS: We developed a clinical dashboard development framework called electronic healthcare data visualization (EHDViz) toolkit for generating web-based, real-time clinical dashboards for visualising heterogeneous biomedical, healthcare and wellness data. The EHDViz is an extensible toolkit that uses R packages for data management, normalisation and producing high-quality visualisations over the web using R/Shiny web server architecture. We have developed use cases to illustrate utility of EHDViz in different scenarios of clinical and wellness setting as a visualisation aid for improving healthcare delivery. RESULTS: Using EHDViz, we prototyped clinical dashboards to demonstrate the contextual versatility of EHDViz toolkit. An outpatient cohort was used to visualise population health management tasks (n=14,221), and an inpatient cohort was used to visualise real-time acuity risk in a clinical unit (n=445), and a quantified-self example using wellness data from a fitness activity monitor worn by a single individual was also discussed (n-of-1). The back-end system retrieves relevant data from data source, populates the main panel of the application and integrates user-defined data features in real-time and renders output using modern web browsers. The visualisation elements can be customised using health features, disease names, procedure names or medical codes to populate the visualisations. The source code of EHDViz and various prototypes developed using EHDViz are available in the public domain at http://ehdviz.dudleylab.org. CONCLUSIONS: Collaborative data visualisations, wellness trend predictions, risk estimation, proactive acuity status monitoring and knowledge of complex disease indicators are essential components of implementing data-driven precision medicine. As an open-source visualisation framework capable of integrating health assessment, EHDViz aims to be a valuable toolkit for rapid design, development and implementation of scalable clinical data visualisation dashboards.


Assuntos
Apresentação de Dados , Sistemas de Gerenciamento de Base de Dados , Atenção à Saúde/normas , Eletrônica Médica/métodos , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA