Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1171531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351202

RESUMO

Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.

2.
Biochem Biophys Res Commun ; 601: 65-72, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35228123

RESUMO

Taste recognition mediated by taste receptors is critical for the survival of animals in nature and is an important determinant of nutritional status and quality of life in humans. However, many factors including aging, diabetes, zinc deficiency, infection with influenza or cold viruses, and chemotherapy can trigger dysgeusia, for which a standard treatment has not been established. We here established an engineered strain of medaka (Oryzias latipes) that expresses green fluorescent protein (GFP) from the endogenous taste 1 receptor 3 (T1R3) gene locus with the use of the CRISPR-Cas9 system. This T1R3-GFP knock-in (KI) strain allows direct visualization of expression from this locus by monitoring of GFP fluorescence. The pattern of GFP expression in the T1R3-GFP KI fish thus mimicked that of endogenous T1R3 gene expression. Furthermore, exposure of T1R3-GFP KI medaka to water containing monosodium glutamate or the anticancer agent 5-fluorouracil resulted in an increase or decrease, respectively, in GFP fluorescence intensity, effects that also recapitulated those on T1R3 mRNA abundance. Finally, screening for agents that affect GFP fluorescence intensity in T1R3-GFP KI medaka identified tryptophan as an amino acid that increases T1R3 gene expression. The establishment of this screening system for taste receptor expression in medaka provides a new tool for the development of potential therapeutic agents for dysgeusia.


Assuntos
Oryzias , Animais , Sistemas CRISPR-Cas/genética , Disgeusia/genética , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Oryzias/genética , Qualidade de Vida , Paladar
3.
Methods Mol Biol ; 2457: 321-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349151

RESUMO

An important approach to investigate intercellular connectivity via plasmodesmata is to visualize and track the movement of fluorescent proteins between cells. The intercellular connectivity is largely controlled by the size exclusion limit of the pores. Over the past few decades, the technique to observe and analyze intercellular movement of a fluorescent protein has been developed mainly in angiosperms such as Arabidopsis thaliana. We recently applied the corresponding system to track the intercellular movement of the fluorescent protein Dendra2 in the moss Physcomitrium (Physcomitrella) patens. The protonemal tissues are particularly suited for observation of the intercellular movement due to the simple organization. Here, we describe a protocol suitable for the analysis of Dendra2 movement between cells in P. patens.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Bryopsida/metabolismo , Plasmodesmos/metabolismo
4.
Plant Cell Physiol ; 61(5): 942-956, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101300

RESUMO

Cell-to-cell communication is tightly regulated in response to environmental stimuli in plants. We previously used a photoconvertible fluorescent protein Dendra2 as a model reporter to study this process. This experiment revealed that macromolecular trafficking between protonemal cells in Physcomitrella patens is suppressed in response to abscisic acid (ABA). However, it remains unknown which ABA signaling components contribute to this suppression and how. Here, we show that ABA signaling components SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2 (PpSnRK2) and ABA INSENSITIVE 3 (PpABI3) play roles as an essential and promotive factor, respectively, in regulating ABA-induced suppression of Dendra2 diffusion between cells (ASD). Our quantitative imaging analysis revealed that disruption of PpSnRK2 resulted in defective ASD onset itself, whereas disruption of PpABI3 caused an 81-min delay in the initiation of ASD. Live-cell imaging of callose deposition using aniline blue staining showed that, despite this onset delay, callose deposition on cross walls remained constant in the PpABI3 disruptant, suggesting that PpABI3 facilitates ASD in a callose-independent manner. Given that ABA is an important phytohormone to cope with abiotic stresses, we further explored cellular physiological responses. We found that the acquisition of salt stress tolerance is promoted by PpABI3 in a quantitative manner similar to ASD. Our results suggest that PpABI3-mediated ABA signaling may effectively coordinate cell-to-cell communication during the acquisition of salt stress tolerance. This study will accelerate the quantitative study for ABA signaling mechanism and function in response to various abiotic stresses.


Assuntos
Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Ácido Abscísico/farmacologia , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Plasmodesmos/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos
5.
Plant Cell Physiol ; 60(4): 738-751, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597108

RESUMO

In multi-cellular organisms, cell-to-cell communication is crucial for adapting to changes in the surrounding environment. In plants, plasmodesmata (PD) provide a unique pathway for cell-to-cell communication. PD interconnect most cells and generate a cytoplasmic continuum, allowing the trafficking of various micro- and macromolecules between cells. This molecular trafficking through PD is dynamically regulated by altering PD permeability dependent on environmental changes, thereby leading to an appropriate response to various stresses; however, how PD permeability is dynamically regulated is still largely unknown. Moreover, studies on the regulation of PD permeability have been conducted primarily in a limited number of angiosperms. Here, we studied the regulation of PD permeability in the moss Physcomitrella patens and report that molecular trafficking through PD is rapidly and reversibly restricted by abscisic acid (ABA). Since ABA plays a key role in various stress responses in the moss, PD permeability can be controlled by ABA to adapt to surrounding environmental changes. This ABA-dependent restriction of PD trafficking correlates with a reduction in PD pore size. Furthermore, we also found that the rate of macromolecular trafficking is higher in an ABA-synthesis defective mutant, suggesting that the endogenous level of ABA is also important for PD-mediated macromolecular trafficking. Thus, our study provides compelling evidence that P. patens exploits ABA as one of the key regulators of PD function.


Assuntos
Bryopsida/metabolismo , Plasmodesmos/metabolismo , Ácido Abscísico/metabolismo , Comunicação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA