Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pain ; 164(1): 43-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442931

RESUMO

ABSTRACT: Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the BMP type I receptor ACVR1 (ACVR1 R206H ), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although patients with FOP can harbor pathological lesions in the peripheral and central nervous system, their etiology and clinical impact are unclear. Quantitative sensory testing of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.


Assuntos
Miosite Ossificante , Neuralgia , Ossificação Heterotópica , Humanos , Mutação com Ganho de Função , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Células Receptoras Sensoriais/metabolismo , Neuralgia/genética , Mutação/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo
3.
Bone ; 153: 116129, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34311122

RESUMO

Macrophages play crucial roles in many human disease processes. However, obtaining large numbers of primary cells for study is often difficult. We describe 2D and 3D methods for directing human induced pluripotent stem cells (hiPSCs) into macrophages (iMACs). iMACs generated in 2D culture showed functional similarities to human primary monocyte-derived M2-like macrophages, and could be successfully polarized into a M1-like phenotype. Both M1- and M2-like iMACs showed phagocytic activity and reactivity to endogenous or exogenous stimuli. In contrast, iMACs generated by a 3D culture system showed mixed M1- and M2-like functional characteristics. 2D-iMACs from patients with fibrodysplasia ossificans progressiva (FOP), an inherited disease with progressive heterotopic ossification driven by inflammation, showed prolonged inflammatory cytokine production and higher Activin A production after M1-like polarization, resulting in dampened responses to additional LPS stimulation. These results demonstrate a simple and robust way of creating hiPSC-derived M1- and M2-like macrophage lineages, while identifying macrophages as a source of Activin A that may drive heterotopic ossification in FOP.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
4.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429363

RESUMO

BACKGROUND: Inflammation helps regulate normal growth and tissue repair. Although bone morphogenetic proteins (BMPs) and inflammation are known contributors to abnormal bone formation, how these pathways interact in ossification remains unclear. METHODS: We examined this potential link in patients with fibrodysplasia ossificans progressiva (FOP), a genetic condition of progressive heterotopic ossification caused by activating mutations in the Activin A type I receptor (ACVR1/ALK2). FOP patients show exquisite sensitivity to trauma, suggesting that BMP pathway activation may alter immune responses. We studied primary blood, monocyte, and macrophage samples from control and FOP subjects using multiplex cytokine, gene expression, and protein analyses; examined CD14+ primary monocyte and macrophage responses to TLR ligands; and assayed BMP, TGF-ß activated kinase 1 (TAK1), and NF-κB pathways. RESULTS: FOP subjects at baseline without clinically evident heterotopic ossification showed increased serum IL-3, IL-7, IL-8, and IL-10. CD14+ primary monocytes treated with the TLR4 activator LPS showed increased CCL5, CCR7, and CXCL10; abnormal cytokine/chemokine secretion; and prolonged activation of the NF-κB pathway. FOP macrophages derived from primary monocytes also showed abnormal cytokine/chemokine secretion, increased TGF-ß production, and p38MAPK activation. Surprisingly, SMAD phosphorylation was not significantly changed in the FOP monocytes/macrophages. CONCLUSIONS: Abnormal ACVR1 activity causes a proinflammatory state via increased NF-κB and p38MAPK activity. Similar changes may contribute to other types of heterotopic ossification, such as in scleroderma and dermatomyositis; after trauma; or with recombinant BMP-induced bone fusion. Our findings suggest that chronic antiinflammatory treatment may be useful for heterotopic ossification.


Assuntos
Receptores de Ativinas Tipo I/sangue , Inflamação/complicações , Miosite Ossificante/complicações , NF-kappa B/sangue , Ossificação Heterotópica/etiologia , Quimiocinas/sangue , Citocinas/sangue , Humanos , Inflamação/sangue , Macrófagos/metabolismo , Monócitos/metabolismo , Miosite Ossificante/sangue , Miosite Ossificante/imunologia , Ossificação Heterotópica/sangue , Ossificação Heterotópica/imunologia , Transdução de Sinais , Fator de Crescimento Transformador beta/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/sangue
5.
Nat Med ; 22(4): 388-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26998835

RESUMO

Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities and nervous system defects, though neither affected cell types nor impaired signaling pathways are fully understood. Whether 7DHC accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from subjects with SLOS, we identified cellular defects that lead to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7DHC accumulation, not cholesterol deficiency, is critical for SLOS-associated defects. We further identified downregulation of Wnt/ß-catenin signaling as a key initiator of aberrant SLOS iPSC differentiation through the direct inhibitory effects of 7DHC on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs, suggesting that Wnt signaling may be a promising therapeutic target for SLOS.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Via de Sinalização Wnt/genética , Animais , Colesterol/biossíntese , Colesterol/metabolismo , Desidrocolesteróis/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Mutação , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/patologia
6.
Vascul Pharmacol ; 59(1-2): 36-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23747964

RESUMO

Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequencing, we identified a selective group of cytokines that are suppressed by progesterone both under physiological conditions and during pathological activation by lipopolysaccharide. In particular, IL-6, IL-8, CXCL2/3, and CXCL1 were found to be direct targets of PR, as determined by ChIP-sequencing. Regulation of these cytokines by progesterone was also confirmed by bead-based multiplex cytokine assays and quantitative PCR. These findings provide a novel role for PR in the direct regulation of cytokine levels secreted by the endothelium. They also suggest that progesterone-PR signaling in the endothelium directly impacts leukocyte trafficking in PR-expressing tissues.


Assuntos
Quimiocinas CXC/biossíntese , Endotélio Vascular/metabolismo , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Receptores de Progesterona/metabolismo , Células Cultivadas , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Progesterona/genética , Progesterona/metabolismo , Receptores de Progesterona/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA