Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453606

RESUMO

The electrochemical reduction of riboflavin (vitamin B2) in a dimethyl sulfoxide solvent was examined under a CO2 atmosphere and compared with results under an argon atmosphere. Variable-scan-rate cyclic voltammetry combined with controlled potential electrolysis (CPE) and analysis by UV-vis and EPR spectroscopies provided insights into the nature of interactions of reduced flavins with dissolved CO2. Reductive exhaustive CPE experiments under CO2 indicated an overall two-electron stoichiometry, compared to one-electron reduction under an argon atmosphere, due to the lowering of the formal one-electron reduction potential of the flavin radical anion to form the dianion, which can be rationalized by riboflavin-CO2 molecular interactions. UV-vis spectroscopic measurements confirmed complete chemical reversibility of the redox transformations over extended time scales. Digital simulation modeling of the voltammetric data enabled extraction of thermodynamic and kinetic parameters for the proposed mechanism, comprising multiple proton-coupled electron transfer steps, diamagnetic anions, radical anions, and neutral radical intermediates enroute to the fully reduced state, as well as evidence of a long-lived solution phase complex of the reduced riboflavin with CO2.

2.
Anal Methods ; 16(9): 1323-1329, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38189186

RESUMO

Two new techniques for analyzing praziquantel (PZQ), an effective antiparasitic drug used in fresh and saltwater aquariums, were optimized and compared. One method was based on voltammetry and the other method used gas chromatography combined with mass spectrometry (GC-MS), although both procedures utilized the same sample pretreatment strategy which involved the PZQ being quantitatively transferred into acetonitrile using solid phase extraction. GC-MS analysis led to lower limits of detection (0.32 µM, 0.10 ppm) and quantification (0.72 µM, 0.22 ppm) compared to voltammetry, although both methods gave acceptable quantification for levels of PZQ > 25 µM (7.8 ppm). GC-MS is preferred for the most accurate determination, but voltammetry may provide a cost-effective alternative for detecting PZQ where on site testing is required.


Assuntos
Praziquantel , Espectrometria de Massas em Tandem , Praziquantel/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem/métodos , Água Doce
3.
ACS Appl Mater Interfaces ; 13(48): 57851-57863, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34843200

RESUMO

Magnetically directed localized polymerization is of immense interest for its extensive impacts and applications in numerous fields. The use of means untethered from an external magnetic field to localize initiation of polymerization to develop a curing system is a novel concept, with a sustainable, efficient, and eco-friendly approach and a wide range of potential in both science and engineering. However, the conventional means for the initiation of polymerization cannot define the desirable location of polymerization, which is often exacerbated by the poor temporal control in the curing system. Herein, the copper-immobilized dendrimer-based magnetic iron oxide silica (MNPs-G2@Cu2+) co-nanoinitiators are rationally designed as initiators for redox radical polymerization. The nanoinitiators are magnetically responsive and therefore enable localized polymerization using an external magnetic field. In this work, anaerobic polymerization of an adhesive composed of triethylene glycol dimethacrylate, tert-butyl peroxybenzoate, and MNPs-G2@Cu2+ as the magnetic co-nanoinitiators has been investigated. The use of a magnet locates and promotes redox free radical polymerization through the synergistic functions between peroxide and MNPs-G2@Cu2+ co-nanoinitiators. The mechanical properties of the resulting polymer are considerably reinforced because the MNPs-G2@Cu2+ co-nanoinitiators concurrently play another crucial role as nanofillers. This strategy provides a novel approach for magnetically tunable localized polymerization, which allows new opportunities to govern the formulation of advanced adhesives through polymerization under hazard-free conditions for various promising applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA