Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371573

RESUMO

BACKGROUND: The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid ß-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and H2S. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses. The possible interaction between the CAC and itaconate has been investigated. METHODS: the modulatory effects of itaconate on the transport activity of the native and recombinant CAC were tested using the proteoliposome experimental model together with site-directed mutagenesis and computational analysis. RESULTS: Itaconate reacts with the CAC causing irreversible inhibition. Dose-response experiment performed with the native and recombinant protein showed IC50 for itaconate of 11 ± 4.6 mM and 8.4 ± 2.9 mM, respectively. The IC50 decreased to 3.8 ± 1.0 mM by lowering the pH from pH 7.0 to pH 6.5. Inhibition kinetics revealed a non-competitive type of inhibition. C136 is the main target of itaconate, as demonstrated by the increased IC50 of mutants in which this Cys was substituted by Val. The central role of C136 was confirmed by covalent docking. Administration of dimethyl itaconate to HeLa cells inhibited the CAC transport activity, suggesting that itaconate could react with the CAC also in intact cells.


Assuntos
Proteínas de Membrana Transportadoras , Mitocôndrias , Humanos , Carnitina/metabolismo , Cisteína/metabolismo , Células HeLa/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Moduladores de Transporte de Membrana/farmacologia
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768549

RESUMO

The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [3H]-carnitineex/carnitinein antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters. The inhibition was not reversed by physiological and sulfhydryl-reducing reagents, such as glutathione (GSH) or dithioerythritol (DTE). The IC50 derived from the dose-response analysis indicated that PAT inhibition was in the range of 50 µM both on the native and on rat and human recombinant protein. The kinetics process revealed a competitive type of inhibition. A substrate protection experiment confirmed that the interaction of PAT with the protein occurred within a protein region, including the substrate-binding area. The mechanism of inhibition was identified using the site-directed mutagenesis of CAC. No inhibition was observed on Cys mutants in which only the C136 residue was mutated. Mass spectrometry studies and in silico molecular modeling analysis corroborated the outcomes derived from the biochemical assays.


Assuntos
Patulina , Humanos , Animais , Ratos , Escherichia coli/metabolismo , Cisteína/metabolismo , Reagentes de Sulfidrila/farmacologia , Carnitina/farmacologia , Carnitina/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras
3.
Int J Biol Macromol ; 221: 1453-1465, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36122779

RESUMO

Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.


Assuntos
Carnitina Aciltransferases , Prolina , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/química , Carnitina Aciltransferases/metabolismo , Glicina , Carnitina , Alanina
4.
Sci Rep ; 12(1): 14570, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028562

RESUMO

The type II glycoprotein CD98 (SLC3A2) is a membrane protein with pleiotropic roles in cells, ranging from modulation of inflammatory processes, host-pathogen interactions to association with membrane transporters of the SLC7 family. The recent resolution of CD98 structure in complex with LAT1 showed that four Asn residues, N365, N381, N424, N506, harbour N-glycosylation moieties. Then, the role of N-glycosylation on CD98 trafficking and stability was investigated by combining bioinformatics, site-directed mutagenesis and cell biology approach. Single, double, triple and quadruple mutants of the four Asn exhibited altered electrophoretic mobility, with apparent molecular masses from 95 to 70 kDa. The quadruple mutant displayed a single band of 70 kDa corresponding to the unglycosylated protein. The presence in the membrane and the trafficking of CD98 were evaluated by a biotinylation assay and a brefeldin assay, respectively. Taken together, the results highlighted that the quadruple mutation severely impaired both the stability and the trafficking of CD98 to the plasma membrane. The decreased presence of CD98 at the plasma membrane, correlated with a lower presence of LAT1 (SLC7A5) and its transport activity. This finding opens new perspectives for human therapy. Indeed, the inhibition of CD98 trafficking would act synergistically with LAT1 inhibitors that are under clinical trial for anticancer therapy.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Proteínas de Membrana Transportadoras , Membrana Celular , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Glicosilação , Humanos , Mutagênese Sítio-Dirigida
5.
Free Radic Biol Med ; 188: 395-403, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792242

RESUMO

Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Heme/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Compostos Organometálicos/farmacologia
6.
Biochim Biophys Acta Bioenerg ; 1863(5): 148557, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367451

RESUMO

We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.


Assuntos
Carnitina Aciltransferases , Praseodímio , Aminoácidos Básicos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferases/química , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas Mitocondriais/metabolismo
7.
ChemMedChem ; 16(18): 2807-2816, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34047061

RESUMO

Dantrolene, a drug used for the management of malignant hyperthermia, had been recently evaluated for prospective repurposing as multitarget agent for neurodegenerative syndromes, including Alzheimer's disease (AD). Herein, twenty-one dantrolene-like hydrazide and hydrazone analogues were synthesized with the aim of exploring structure-activity relationships (SARs) for the inhibition of human monoamine oxidases (MAOs) and acetylcholinesterase (AChE), two well-established target enzymes for anti-AD drugs. With few exceptions, the newly synthesized compounds exhibited selectivity toward MAO B over either MAO A or AChE, with the secondary aldimine 9 and phenylhydrazone 20 attaining IC50 values of 0.68 and 0.81 µM, respectively. While no general SAR trend was observed with lipophilicity descriptors, a molecular simplification strategy allowed the main pharmacophore features to be identified, which are responsible for the inhibitory activity toward MAO B. Finally, further in vitro investigations revealed cell protection from oxidative insult and activation of carnitine/acylcarnitine carrier as concomitant biological activities responsible for neuroprotection by hits 9 and 20 and other promising compounds in the examined series.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Hidrazonas/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Hidrazonas/síntese química , Hidrazonas/química , Estrutura Molecular , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
8.
Biomolecules ; 11(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807231

RESUMO

The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein.


Assuntos
Carnitina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Sítios de Ligação , Carnitina/química , Glutationa/química , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Especificidade por Substrato
9.
Front Cell Dev Biol ; 8: 583850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072764

RESUMO

Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a "shuttle-molecule" to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the ß-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.

10.
Front Physiol ; 11: 794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733282

RESUMO

Renal proximal tubular cells are high energy-demanding cells mainly relying on fatty acid oxidation. In stress conditions, such as transient hypoxia, fatty acid oxidation (FAO) decreases and carbohydrate catabolism fails to compensate for the energy demand. In this scenario, the surviving tubular cells exhibit the peculiar phenotype associated with fibrosis that is the histological manifestation of a process culminating in chronic and end-stage kidney disease. Genome-wide transcriptome analysis revealed that, together with inflammation, FAO is the top dysregulated pathway in kidney diseases with a decreased expression of key FAO enzymes and regulators. Another evidence that links the derangement of FAO to fibrosis is the progressive decrease of the expression of peroxisome proliferator-activated receptor α (PPARα) in aged people, that triggers the age-associated renal fibrosis. To allow FAO completion, a coordinate network of enzymes and transport proteins is required. Indeed, the mitochondrial inner membrane is impermeable to fatty acyl-CoAs and a specialized system, well known as carnitine shuttle, is needed for translocating fatty acids moieties, conjugated with carnitine, into mitochondrial matrix for the ß-oxidation. The first component of this system is the carnitine palmitoyltransferase 1 (CPT1) responsible for transfer acyl moieties to carnitine. Several studies indicated that the stimulation of CPT1 activity and expression has a protective effect against renal fibrosis. Therefore, the network of enzymes and transporters linked to FAO may represent potential pharmacological targets deserving further attention in the development of new drugs to attenuate renal dysfunction.

11.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070004

RESUMO

The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. The mechanism of inhibition was studied by using the recombinant WT or Cys site-directed mutants of CAC. From the dose-response curve of the effect of Cu2+ on the recombinant protein, an IC50 of 0.28 µM was derived. Inhibition kinetics revealed a non-competitive type of inhibition by Cu2+. However, a substrate protection experiment indicated that the interaction of Cu2+ with the protein occurred in the vicinity of the substrate-binding site. Dose-response analysis on Cys mutants led to much higher IC50 values for the mutants C136S or C155S. The highest value was obtained for the C136/155S double mutant, indicating the involvement of both Cys residues in the interaction with Cu2+. Computational analysis performed on the WT CAC and on Cys mutants showed a pattern of the binding energy mostly overlapping the binding affinity derived from the dose-response analysis. All the data concur with bridging of Cu2+ with the two Cys residues, which blocks the conformational changes required for transport cycle.


Assuntos
Carnitina Aciltransferases/metabolismo , Cobre/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Carnitina Aciltransferases/genética , Química Computacional , Cinética , Mutagênese Sítio-Dirigida , Mutação/genética , Ratos , Peixe-Zebra
12.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775359

RESUMO

The orphan drug dantrolene (DAN) is the only therapeutic treatment for malignant hyperthermia (MH), a pharmacogenetic pathology affecting 0.2 over 10,000 people in the EU. It acts by inhibiting ryanodine receptors, which are responsible for calcium recruitment in striatal muscles and brain. Because of its involvement in calcium homeostasis, DAN has been successfully investigated for its potential as neuroprotecting small molecule in several animal models of Alzheimer's disease (AD). Nevertheless, its effects at a molecular level, namely on putative targets involved in neurodegeneration, are still scarcely known. Herein, we present a prospective study on repurposing of DAN involving, besides the well-known calcium antagonism, inhibition of monoamine oxidase B and acetylcholinesterase, cytoprotection from oxidative insult, and activation of carnitine/acylcarnitine carrier, as concurring biological activities responsible for neuroprotection.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cálcio/metabolismo , Dantroleno/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/patologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Dantroleno/química , Reposicionamento de Medicamentos , Humanos , Hipertermia Maligna/tratamento farmacológico , Monoaminoxidase/química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/química
13.
Biochim Biophys Acta Bioenerg ; 1860(9): 708-716, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31340138

RESUMO

The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.


Assuntos
Antiporters/metabolismo , Carnitina Aciltransferases/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Animais , Aspergillus nidulans , Transporte Biológico , Carnitina Aciltransferases/química , Carnitina Aciltransferases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Conformação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência , Triptofano/química , Triptofano/genética
14.
SLAS Discov ; 24(9): 867-881, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251685

RESUMO

The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.


Assuntos
Transporte Biológico/fisiologia , Cisteína/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Animais , Desenho de Fármacos , Humanos
15.
Chem Biol Interact ; 307: 179-185, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31063765

RESUMO

The effect of polyphenols, recognized as the principal antioxidant and beneficial molecules introduced with the diet, extracted from sweet cherry (Prunus avium L.) on the recombinant human mitochondrial carnitine/acylcarnitine transporter (CACT) has been studied in proteoliposomes. CACT transport activity, which was strongly impaired after oxidation by atmospheric O2 or H2O2, due to the formation of a disulfide bridge between cysteines 136 and 155, was restored by externally added polyphenols. CACT reduction by polyphenols was time dependent. Spectroscopic analysis of polyphenolic extracts revealed eight most represented compounds in four cultivars. Molecular docking of CACT structural omology model with the most either abundant and arguably bio-available phenolic compound (trans 3-O-feruloyl-quinic acid) of the mix, is in agreement with the experimental data since it results located in the active site close to cysteine 136 at the bottom of the translocation aqueous cavity.


Assuntos
Carnitina Aciltransferases/metabolismo , Mitocôndrias/metabolismo , Polifenóis/metabolismo , Prunus avium/química , Sítios de Ligação , Carnitina Aciltransferases/química , Carnitina Aciltransferases/genética , Humanos , Peróxido de Hidrogênio/química , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Polifenóis/análise , Estrutura Terciária de Proteína , Prunus avium/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
16.
Int J Biol Macromol ; 120(Pt A): 93-99, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30121301

RESUMO

The effect of SH reagents on the human mitochondrial ornithine/citrulline carrier (hORC) was studied. Site-directed Cys mutants were employed to gain information on structure/function relationships. The substitutions of each Cys by Ala did not alter the hORC activity measured as [3H]ornithine/ornithine antiport in proteoliposomes. N­ethylmaleimide inhibited the transport of WT with IC50 of 149 µM. C51A, C50A and C132A showed a much higher IC50. MTSEA and MTSET also inhibited the WT with IC50 of 0.40 µM and 1.60 µM, respectively. C51A and C132A showed much higher IC50 values for both reagents. The triple mutant C50/51/132A showed an IC50 for the three reagents that was higher than that of the single mutants. The data strongly suggests that C132, C50 and C51 are involved in inhibition of hORC. Inhibition of WT and mutants by CuPhenanthroline, an S-S forming reagent, suggested that C132 may form disulfides with C50 or C51, impairing the transporter function. The structure/function relationships information deriving from the inhibition studies, were corroborated by the homology structural model of the transporter. The effect of HgCl2 and methyl mercury was also tested on hORC in the light of their capacity to bind thiol residues. Both reagents potently inhibit the transporter.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial , Relação Estrutura-Atividade
17.
Front Mol Biosci ; 5: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998111

RESUMO

The Mitochondrial Ascorbic Acid Transporter (MAT) from both rat liver and potato mitochondria has been reconstituted in proteoliposomes. The protein has a molecular mass in the range of 28-35 kDa and catalyzes saturable, temperature and pH dependent, unidirectional ascorbic acid transport. The transport activity is sodium independent and it is optimal at acidic pH values. It is stimulated by proton gradient, thus supporting that ascorbate is symported with H+. It is efficiently inhibited by the lysine reagent pyridoxal phosphate and it is not affected by inhibitors of other recognized plasma and mitochondrial membranes ascorbate transporters GLUT1(glucose transporter-1) or SVCT2 (sodium-dependent vitamin C transporter-2). Rat protein catalyzes a cooperative ascorbate transport, being involved two binding sites; the measured K0.5 is 1.5 mM. Taking into account the experimental results we propose that the reconstituted ascorbate transporter is not a GLUT or SVCT, since it shows different biochemical features. Data of potato transporter overlap the mammalian ones, except for the kinetic parameters non-experimentally measurable, thus supporting the MAT in plants fulfills the same transport role.

18.
Sci Rep ; 8(1): 3758, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491466

RESUMO

Exosomes are extracellular vesicles involved in cell-to-cell communication. Previous large scale proteomics revealed that they contain SLC proteins. However, no data on the function of exosomal SLCs is available, so far. An SLC localized in exosomes was here characterized for the first time: the carnitine transporter OCTN2 (SLC22A5). The protein was detected by Western Blot analysis in HEK293 exosomes. To investigate the functional properties of the exosomal OCTN2, the proteins extracted from vesicles were reconstituted into proteolipsomes and the transport function was measured as uptake of 3H-carnitine. Transport was stimulated by sodium and was dependent on pH. 3H-carnitine uptake was inhibited by Acetyl-carnitine, but not by Asn, Gln and Arg thus excluding interference by ATB0,+, an amino acid transporter which also recognizes carnitine. Cardiolipin failed to stimulate transport, excluding the activity of the mitochondrial Carnitine/acylcarnitine transporter. Increased level of exosomal OCTN2 was induced by treatment of HEK293 with the pro-inflammatory cytokine INFγ. All data concurred to demonstrate that OCTN2 present in exosomes is fully functional and is in its native conformation. Functional OCTN2 was detected also in human urinary exosomes, thus suggesting the OCTN2 exosomal protein as a candidate biomarker for inflammation related pathologies.


Assuntos
Exossomos/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Células HEK293 , Humanos , Conformação Proteica , Transporte Proteico , Membro 5 da Família 22 de Carreadores de Soluto/química , Membro 5 da Família 22 de Carreadores de Soluto/urina
19.
RSC Adv ; 8(10): 5451-5458, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35542423

RESUMO

In this study, a new regenerative strategy to treat several neurodegenerative diseases is suggested by the use of a multitarget approach induced by our small molecule, MC111. Considering the importance of P-gp and BCRP expression on stem cell differentiation and the involvement of TLR4 on neurodegeneration processes, we investigated the effect of MC111, belonging to our library of P-gp active compounds on: (i) TLR4 signaling; (ii) P-gp and BCRP activity and expression; (iii) neurite sprouting. The observed findings exerted by MC111, open a new scenario for a multitarget and regenerative approach in neurodegenerative diseases encouraging the in vivo evaluation of MC111 as new tool in neuroreparative medicine.

20.
Curr Pharm Des ; 23(26): 3871-3883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28625135

RESUMO

Transport systems are hydrophobic proteins localized in cell membranes where they mediate transmembrane flow of nutrients, ions and any other compounds essential for cell metabolism. More than 400 transporters of the SoLuteCarrier (SLC) group are present in human cells. Transporters take contacts also with xenobiotics, thus mediating absorption and/or interaction with these exogenous compounds. Since drugs belong to xenobiotics, transporters gained interest also in drug discovery. Transporters differentially expressed in pathological conditions are exploited as drug targets. Among the methodologies for defining drug interactions, in silico ligand screening and intact cell transport assay were the most diffused, so far. The first is a predictive methodology based on docking chemicals to transporters. It presents limitations due to the small number of human transporter 3D structures that have to be constructed by homology modeling. Intact cells are used for testing effects of drugs and for validating predictions. The challenges of handling this very complex experimental system, are the interferences caused by other transporters and/or intracellular enzymes. Thus, methodologies with lower complexity are welcome. One of the most updated is the proteoliposome nanotechnology consisting in a cell mimicking phospholipid membrane in which a purified transporter is inserted. In this system, drug-transporter interaction can be studied defining kinetics and mechanisms. Several data have been obtained by proteoliposome nanotechnology. An overview of data obtained on the organic cation transporters OCTN1, OCTN2 and on the amino acid transporters ASCT2 and B0AT1 will be presented. Standardized procedures, expected to be pointed out, will enlarge the assay to High Throughput Screenings.


Assuntos
Membrana Celular/metabolismo , Alimentos , Proteínas de Membrana Transportadoras/metabolismo , Nanotecnologia/métodos , Proteolipídeos/metabolismo , Animais , Transporte Biológico/fisiologia , Membrana Celular/química , Humanos , Proteínas de Membrana Transportadoras/química , Nanotecnologia/tendências , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Proteolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA