Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(14): 4277-4289, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37100757

RESUMO

Global climate change has dramatically increased flooding events, which have a strong impact on crop production. Barley (Hordeum vulgare) is one of the most important cereals and its cultivation includes a broad range of different environments. We tested the capacity to germinate of a large barley panel after a short period of submergence followed by a period of recovery. We demonstrate that sensitive barley varieties activate underwater secondary dormancy because of a lower permeability to oxygen dissolved in water. In sensitive barley accessions, secondary dormancy is removed by nitric oxide donors. The results of a genome-wide association study uncovered a Laccase gene located in a region of significant marker-trait association that is differently regulated during grain development and plays a key role in this process. Our findings will help breeders to improve the genetics of barley, thereby increasing the capacity of seeds to germinate after a short period of flooding.


Assuntos
Germinação , Hordeum , Germinação/genética , Hordeum/genética , Estudo de Associação Genômica Ampla , Sementes/genética , Grão Comestível/genética , Hipóxia
2.
Rice (N Y) ; 16(1): 2, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36633713

RESUMO

BACKGROUND: Rice is one of the most salt sensitive crops at seedling, early vegetative and reproductive stages. Varieties with salinity tolerance at seedling stage promote an efficient growth at early stages in salt affected soils, leading to healthy vegetative growth that protects crop yield. Saltol major QTL confers capacity to young rice plants growing under salt condition by maintaining a low Na+/K+ molar ratio in the shoots. RESULTS: Marker-assisted backcross (MABC) procedure was adopted to transfer Saltol locus conferring salt tolerance at seedling stage from donor indica IR64-Saltol to two temperate japonica varieties, Vialone Nano and Onice. Forward and background selections were accomplished using polymorphic KASP markers and a final evaluation of genetic background recovery of the selected lines was conducted using 15,580 SNP markers obtained from Genotyping by Sequencing. Three MABC generations followed by two selfing, allowed the identification of introgression lines achieving a recovery of the recurrent parent (RP) genome up to 100% (based on KASP markers) or 98.97% (based on GBS). Lines with highest RP genome recovery (RPGR) were evaluated for agronomical-phenological traits in field under non-salinized conditions. VN1, VN4, O1 lines were selected considering the agronomic evaluations and the RPGR% results as the most interesting for commercial exploitation. A physiological characterization was conducted by evaluating salt tolerance under hydroponic conditions. The selected lines showed lower standard evaluation system (SES) scores: 62% of VN4, and 57% of O1 plants reaching SES 3 or SES 5 respectively, while only 40% of Vialone Nano and 25% of Onice plants recorded scores from 3 to 5, respectively. VN1, VN4 and O1 showed a reduced electrolyte leakage values, and limited negative effects on relative water content and shoot/root fresh weight ratio. CONCLUSION: The Saltol locus was successfully transferred to two elite varieties by MABC in a time frame of three years. The application of background selection until BC3F3 allowed the selection of lines with a RPGR up to 98.97%. Physiological evaluations for the selected lines indicate an improved salinity tolerance at seedling stage. The results supported the effectiveness of the Saltol locus in temperate japonica and of the MABC procedure for recovering of the RP favorable traits.

3.
Front Plant Sci ; 13: 926277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212331

RESUMO

In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we developed an image analysis-based protocol to accurately phenotype culm diameters and culm wall thickness across 261 barley accessions. Analysis of culm trait data collected from field trials in seven different environments revealed high heritability values (>50%) for most traits except thickness and stiffness, as well as genotype-by-environment interactions. The collection was structured mainly according to row-type, which had a confounding effect on culm traits as evidenced by phenotypic correlations. Within both row-type subsets, outer diameter and section modulus showed significant negative correlations with lodging (<-0.52 and <-0.45, respectively), but no correlation with plant height, indicating the possibility of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we conducted multi-environment genome-wide association studies using mixed model approach across the whole panel and row-type subsets: we identified a total of 192 quantitative trait loci (QTLs) for the studied traits, including subpopulation-specific QTLs and 21 main effect loci for culm diameter and/or section modulus showing effects on lodging without impacting plant height. Providing insights into the genetic architecture of culm morphology in barley and the possible role of candidate genes involved in hormone and cell wall-related pathways, this work supports the potential of loci underpinning culm features to improve lodging resistance and increase barley yield stability under changing environments.

4.
Antioxidants (Basel) ; 11(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35453479

RESUMO

Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human.

5.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099521

RESUMO

In plants, the study of belowground traits is gaining momentum due to their importance on yield formation and the uptake of water and nutrients. In several cereal crops, seminal root number and seminal root angle are proxy traits of the root system architecture at the mature stages, which in turn contributes to modulating the uptake of water and nutrients. Along with seminal root number and seminal root angle, experimental evidence indicates that the transpiration rate response to evaporative demand or vapor pressure deficit is a key physiological trait that might be targeted to cope with drought tolerance as the reduction of the water flux to leaves for limiting transpiration rate at high levels of vapor pressure deficit allows to better manage soil moisture. In the present study, we examined the phenotypic diversity of seminal root number, seminal root angle, and transpiration rate at the seedling stage in a panel of 8-way Multiparent Advanced Generation Inter-Crosses lines of winter barley and correlated these traits with grain yield measured in different site-by-season combinations. Second, phenotypic and genotypic data of the Multiparent Advanced Generation Inter-Crosses population were combined to fit and cross-validate different genomic prediction models for these belowground and physiological traits. Genomic prediction models for seminal root number were fitted using threshold and log-normal models, considering these data as ordinal discrete variable and as count data, respectively, while for seminal root angle and transpiration rate, genomic prediction was implemented using models based on extended genomic best linear unbiased predictors. The results presented in this study show that genome-enabled prediction models of seminal root number, seminal root angle, and transpiration rate data have high predictive ability and that the best models investigated in the present study include first-order additive × additive epistatic interaction effects. Our analyses indicate that beyond grain yield, genomic prediction models might be used to predict belowground and physiological traits and pave the way to practical applications for barley improvement.


Assuntos
Hordeum , Genótipo , Hordeum/genética , Fenótipo , Locos de Características Quantitativas , Plântula/genética
6.
Theor Appl Genet ; 135(2): 553-569, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757472

RESUMO

KEY MESSAGE: Exome sequencing-based allele mining for frost tolerance suggests HvCBF14 rather than CNV at Fr-H2 locus is the main responsible of frost tolerance in barley. Wild relatives, landraces and old cultivars of barley represent a reservoir of untapped and potentially important genes for crop improvement, and the recent sequencing technologies provide the opportunity to mine the existing genetic diversity and to identify new genes/alleles for the traits of interest. In the present study, we use frost tolerance and vernalization requirement as case studies to demonstrate the power of allele mining carried out on exome sequencing data generated from > 400 barley accessions. New deletions in the first intron of VRN-H1 were identified and linked to a reduced vernalization requirement, while the allelic diversity of HvCBF2a, HvCBF4b and HvCBF14 was investigated by combining the analysis of SNPs and read counts. This approach has proven very effective to identify gene paralogs and copy number variants of HvCBF2 and the HvCBF4b-HvCBF2a segment. A multiple linear regression model which considers allelic variation at these genes suggests a major involvement of HvCBF14, rather than copy number variation of HvCBF4b-HvCBF2a, in controlling frost tolerance in barley. Overall, the present study provides powerful resource and tools to discover novel alleles at relevant genes in barley.


Assuntos
Hordeum , Alelos , Variações do Número de Cópias de DNA , Hordeum/genética , Íntrons
7.
Front Plant Sci ; 12: 664148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108982

RESUMO

Multi-parent Advanced Generation Inter-crosses (MAGIC) lines have mosaic genomes that are generated shuffling the genetic material of the founder parents following pre-defined crossing schemes. In cereal crops, these experimental populations have been extensively used to investigate the genetic bases of several traits and dissect the genetic bases of epistasis. In plants, genomic prediction models are usually fitted using either diverse panels of mostly unrelated accessions or individuals of biparental families and several empirical analyses have been conducted to evaluate the predictive ability of models fitted to these populations using different traits. In this paper, we constructed, genotyped and evaluated a barley MAGIC population of 352 individuals developed with a diverse set of eight founder parents showing contrasting phenotypes for grain yield. We combined phenotypic and genotypic information of this MAGIC population to fit several genomic prediction models which were cross-validated to conduct empirical analyses aimed at examining the predictive ability of these models varying the sizes of training populations. Moreover, several methods to optimize the composition of the training population were also applied to this MAGIC population and cross-validated to estimate the resulting predictive ability. Finally, extensive phenotypic data generated in field trials organized across an ample range of water regimes and climatic conditions in the Mediterranean were used to fit and cross-validate multi-environment genomic prediction models including G×E interaction, using both genomic best linear unbiased prediction and reproducing kernel Hilbert space along with a non-linear Gaussian Kernel. Overall, our empirical analyses showed that genomic prediction models trained with a limited number of MAGIC lines can be used to predict grain yield with values of predictive ability that vary from 0.25 to 0.60 and that beyond QTL mapping and analysis of epistatic effects, MAGIC population might be used to successfully fit genomic prediction models. We concluded that for grain yield, the single-environment genomic prediction models examined in this study are equivalent in terms of predictive ability while, in general, multi-environment models that explicitly split marker effects in main and environmental-specific effects outperform simpler multi-environment models.

8.
Rice (N Y) ; 13(1): 71, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030605

RESUMO

BACKGROUND: Rice blast, caused by the fungus Pyricularia oryzae, represents the most damaging fungal disease of rice worldwide. Utilization of rice resistant cultivars represents a practical way to control the disease. Most of the rice varieties cultivated in Europe and several other temperate regions are severely depleted of blast resistance genes, making the identification of resistant sources in genetic background adapted to temperate environments a priority. Given these assumptions, a Genome Wide Association Study (GWAS) for rice blast resistance was undertaken using a panel of 311 temperate/tropical japonica and indica accessions adapted to temperate conditions and genotyped with 37,423 SNP markers. The panel was evaluated for blast resistance in field, under the pressure of the natural blast population, and in growth chamber, using a mixture of three different fungal strains. RESULTS: The parallel screening identified 11 accessions showing high levels of resistance in the two conditions, representing potential donors of resistance sources harbored in rice genotypes adapted to temperate conditions. A general higher resistance level was observed in tropical japonica and indica with respect to temperate japonica varieties. The GWAS identified 14 Marker-Traits Associations (MTAs), 8 of which discovered under field conditions and 6 under growth chamber screening. Three MTAs were identified in both conditions; five MTAs were specifically detected under field conditions while three for the growth chamber inoculation. Comparative analysis of physical/genetic positions of the MTAs showed that most of them were positionally-related with cloned or mapped blast resistance genes or with candidate genes whose functions were compatible for conferring pathogen resistance. However, for three MTAs, indicated as BRF10, BRF11-2 and BRGC11-3, no obvious candidate genes or positional relationships with blast resistance QTLs were identified, raising the possibility that they represent new sources of blast resistance. CONCLUSIONS: We identified 14 MTAs for blast resistance using both field and growth chamber screenings. A total of 11 accessions showing high levels of resistance in both conditions were discovered. Combinations of loci conferring blast resistance were identified in rice accessions adapted to temperate conditions, thus allowing the genetic dissection of affordable resistances present in the panel. The obtained information will provide useful bases for both resistance breeding and further characterization of the highlighted resistance loci.

10.
Front Plant Sci ; 11: 66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117401

RESUMO

Cultivated olive (Olea europaea L. subsp. europaea var. europaea) is the most ancient and spread tree crop in the Mediterranean basin. An important quality trait for the extra virgin olive oil is the fatty acid composition. In particular, a high content of oleic acid and low of linoleic, linolenic, and palmitic acid is considered very relevant in the health properties of the olive oil. The oleate desaturase enzyme encoding-gene (FAD2-2) is the main responsible for the linoleic acid content in the olive fruit mesocarp and, therefore, in the olive oil revealing to be the most important candidate gene for the linoleic acid biosynthesis. In this study, an in silico and structural analysis of the 5'UTR intron of the FAD2-2 gene was conducted with the aim to explore the natural sequence variability and its role in the gene expression regulation. In order to identify functional allele variants, the 5'UTR intron was isolated and partially sequenced in 97 olive cultivars. The sequence analysis allowed to find a 117-bp insertion including two long duplications never found before in FAD2-2 genes in olive and the existence of many intron-mediated enhancement (IME) elements. The sequence polymorphism analysis led to detect 39 SNPs. The candidate gene association study conducted for oleic and linoleic acids content revealed seven SNPs and one indel significantly associated able to explain a phenotypic variation ranging from 7% to 16% among the years. Our study highlighted new structural variants within the FAD2-2 gene in olive, putatively involved in the regulation mechanisms of gene expression associated with the variation of the content of oleic and linoleic acid.

11.
Plants (Basel) ; 8(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430915

RESUMO

Rice quality is mainly related to the following two starch components, apparent amylose content (AAC) and resistant starch (RS). The former affects grain cooking properties, while RS acts as a prebiotic. In the present study, a Genome Wide Association Scan (GWAS) was performed using 115 rice japonica accessions, including tropical and temperate genotypes, with the purpose of expanding the knowledge of the genetic bases affecting RS and AAC. High phenotypic variation was recorded for the two traits, which positively correlated. Moreover, both the parameters correlated with seed length (positive correlation) and seed width (negative correlation). A correlational selection according to human preferences has been hypothesized for the two starch traits and grain size. In addition, human selection has been proposed as the causal agent even for the different phenotypes related to starch and grain size showed by the tropical and temperate japonica accessions utilized in this study. The present GWAS led to the identification of 11 associations for RS on seven chromosomes and five associations for AAC on chromosome 6. Candidate genes and co-positional relationships with quantitative trait loci (QTLs) previously identified as affecting RS and AAC were identified for 6 associations. The candidate genes and the new RS- and/or AAC-associated regions detected provide valuable sources for future functional characterizations and for breeding programs aimed at improving rice grain quality.

12.
Plant J ; 99(6): 1172-1191, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31108005

RESUMO

Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-environment (G×E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.


Assuntos
Aclimatação/genética , Produtos Agrícolas/genética , Exoma , Hordeum/genética , Relógios Circadianos/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Geografia , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento do Exoma
13.
Nat Genet ; 51(5): 905-911, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043760

RESUMO

For more than 10,000 years, the selection of plant and animal traits that are better tailored for human use has shaped the development of civilizations. During this period, bread wheat (Triticum aestivum) emerged as one of the world's most important crops. We use exome sequencing of a worldwide panel of almost 500 genotypes selected from across the geographical range of the wheat species complex to explore how 10,000 years of hybridization, selection, adaptation and plant breeding has shaped the genetic makeup of modern bread wheats. We observe considerable genetic variation at the genic, chromosomal and subgenomic levels, and use this information to decipher the likely origins of modern day wheats, the consequences of range expansion and the allelic variants selected since its domestication. Our data support a reconciled model of wheat evolution and provide novel avenues for future breeding improvement.


Assuntos
Triticum/genética , Pão , Domesticação , Evolução Molecular , Variação Genética , Genoma de Planta , Modelos Genéticos , Filogenia , Melhoramento Vegetal , Sequenciamento do Exoma
14.
Plant Cell Environ ; 42(6): 1832-1846, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802973

RESUMO

Rice is unique among cereals for its ability to germinate not only when submerged but also under anoxic conditions. Rice germination under submergence or anoxia is characterized by a longer coleoptile and delay in radicle emergence. A panel of temperate and tropical japonica rice accessions showing a large variability in coleoptile length was used to investigate genetic factors involved in this developmental process. The ability of the Khao Hlan On rice landrace to vigorously germinate when submerged has been previously associated with the presence of the trehalose 6 phosphate phosphatase 7 (TPP7) gene. In this study, we found that, in the presence of TPP7, polymorphisms and transcriptional variations of the gene in coleoptile tissue were not related to differences in the final coleoptile length under submergence. In order to find new chromosomal regions associated with the different ability of rice to elongate the coleoptile under submergence, we used genome-wide association study analysis on a panel of 273 japonica rice accessions. We discovered 11 significant marker-trait associations and identified candidate genes potentially involved in coleoptile length. Candidate gene expression analyses indicated that japonica rice genotypes possess complex genetic elements that control final coleoptile length under low oxygen.


Assuntos
Mapeamento Cromossômico , Cotilédone/genética , Cotilédone/metabolismo , Dissecação , Oryza/genética , Oryza/metabolismo , Carboidratos/análise , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Genótipo , Germinação , Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Genome ; 11(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505630

RESUMO

A collection of 379 Hordeum vulgare cultivars, comprising all combinations of spring and winter growth habits with two and six row ear type, was screened by genome wide association analysis to discover alleles controlling traits related to grain yield. Genotypes were obtained at 6,810 segregating gene-based single nucleotide polymorphism (SNP) loci and corresponding field trial data were obtained for eight traits related to grain yield at four European sites in three countries over two growth years. The combined data were analyzed and statistically significant associations between the traits and regions of the barley genomes were obtained. Combining this information with the high resolution gene map for barley allowed the identification of candidate genes underlying all scored traits and superposition of this information with the known genomics of grain trait genes in rice resulted in the assignation of 13 putative barley genes controlling grain traits in European cultivated barley. Several of these genes are associated with grain traits in both winter and spring barley.


Assuntos
Hordeum/genética , Locos de Características Quantitativas , Europa (Continente) , Estudo de Associação Genômica Ampla , Genótipo , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sementes/genética
16.
PLoS One ; 12(12): e0189265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29283996

RESUMO

To satisfy future demands, the increase of wheat (Triticum aestivum L.) yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE), are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypic variation. Therefore, a better understanding of their genetic basis and regulation is fundamental. To investigate NUE-related traits and their genetic and environmental regulation, field trials were evaluated in a Central European wheat collection of 93 cultivars at two nitrogen input levels across three seasons. This elite germplasm collection was genotyped on DArTseq® genotypic platform to identify loci affecting N-related complex agronomic traits. To conduct robust genome-wide association mapping, the genetic diversity, population structure and linkage disequilibrium were examined. Population structure was investigated by various methods and two subpopulations were identified. Their separation is based on the breeding history of the cultivars, while analysis of linkage disequilibrium suggested that selective pressures had acted on genomic regions bearing loci with remarkable agronomic importance. Besides NUE, genetic basis for variation in agronomic traits indirectly affecting NUE and its components, moreover genetic loci underlying response to nitrogen fertilisation were also determined. Altogether, 183 marker-trait associations (MTA) were identified spreading over almost the entire genome. We found that most of the MTAs were environmental-dependent. The present study identified several associated markers in those genomic regions where previous reports had found genes or quantitative trait loci influencing the same traits, while most of the MTAs revealed new genomic regions. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArTseq® markers, which will facilitate the understanding of the genetic basis of NUE and agronomically important traits.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , Triticum/genética , Europa (Continente) , Genes de Plantas , Desequilíbrio de Ligação , Triticum/metabolismo
17.
Front Plant Sci ; 8: 1862, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163588

RESUMO

A rice GWAS panel of 281 accessions of japonica rice was phenotypically characterized for 26 traits related to phenology, plant and seed morphology, physiology and yield for 2 years in field conditions under permanent flooding (PF) and limited water (LW). A genome-wide analysis uncovered a total of 160 significant marker-trait associations (MTAs), of which 32 were LW-specific, 59 were PF-specific, and 69 were in common between the two water management systems. LW-specific associations were identified for several agronomic traits including days to maturation, days from flowering to maturation, leaf traits, plant height, panicle and seed traits, hundred grain weight, yield and tillering. Significant MTAs were detected across all the 12 rice chromosomes, while clusters of effects influencing different traits under LW or in both watering conditions were, respectively, observed on chromosomes 4, 8, and 12 and on chromosomes 1, 3, 4, 5, and 8. The analysis of genes annotated in the Nipponbare reference sequence and included in the regions associated to traits related to plant morphology, grain yield, and physiological parameters allowed the identification of genes that were demonstrated to affect the respective traits. Among these, three (OsOFP2, Dlf1, OsMADS56) and seven (SUI1, Sd1, OsCOL4, Nal1, OsphyB, GW5, Ehd1) candidate genes were, respectively, identified to co-localize with LW-specific associations and associations in common between the two water treatments. For several LW-specific MTAs, or in common among the two treatments, positional co-localizations with previously identified QTLs for rice adaptation to water shortages were observed, a result that further supports the role of the loci identified in this work in conferring adaptation to LW. The most robust associations identified here could represent suitable targets for genomic selection approaches to improve yield-related traits under LW.

18.
BMC Genet ; 18(1): 79, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830338

RESUMO

BACKGROUND: Seedling establishment is a crucial and vulnerable stage in the crop life cycle which determines further plant growth. While many studies are available on salt tolerance at the vegetative stage, the mechanisms and genetic bases of salt tolerance during seedling establishment have been poorly investigated. Here, a novel and accurate phenotyping protocol was applied to characterize the response of seedlings to salt stress in two barley cultivars (Nure and Tremois) and their double-haploid population. RESULTS: The combined phenotypic data and existing genetic map led to the identification of a new major QTL for root elongation under salt stress on chromosome 7HS, with the parent Nure carrying the favourable allele. Gene-based markers were developed from the rice syntenic genomic region to restrict the QTL interval to Bin2.1 of barley chromosome 7HS. Furthermore, doubled haploid lines with contrasting responses to salt stress revealed different root morphological responses to stress, with the susceptible genotypes exhibiting an overall reduction in root length and volume but an increase in root diameter and root hair density. CONCLUSIONS: Salt tolerance at the seedling stage was studied in barley through a comprehensive phenotyping protocol that allowed the detection of a new major QTL on chromosome 7HS.


Assuntos
Cromossomos de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Locos de Características Quantitativas , Tolerância ao Sal/genética , Plântula/crescimento & desenvolvimento , Plântula/genética , Mapeamento Cromossômico , Marcadores Genéticos , Genótipo , Hordeum/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética
19.
Rice (N Y) ; 10(1): 29, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597326

RESUMO

BACKGROUND: Bakanae disease, caused by seed-borne Fusarium species, mainly F. fujikuroi, is a rice disease whose importance is considerably increasing in several rice growing countries, leading to incremental production losses. RESULTS: A germplasm collection of japonica rice was screened for F. fujikuroi resistance, allowing the identification of accessions with high-to-moderate levels of resistance to bakanae. A GWAS approach uncovered two genomic regions highly associated with the observed phenotypic variation for response to bakanae infection on the short arm of chromosome 1 (named as qBK1_628091) and on the long arm of chromosome 4 (named as qBK4_31750955). High levels of phenotypic resistance to bakanae were associated to the cumulated presence of the resistant alleles at the two resistance loci, suggesting that they can provide useful levels of disease protection in resistance breeding. A fine comparison with the genomic positions of qBK1_628091 and qBK4_31750955 with respect to the QTLs for bakanae resistance reported in the literature suggests that the resistant loci here described represent new genomic regions associated to F. fujikuroi resistance. A search for candidate genes with a putative role in bakanae resistance was conducted considering all the annotated genes and F. fujikuroi-related DEGs included in the two genomic regions highlighting several gene functions that could be involved in resistance, thus paving the way to the functional characterization of the resistance loci. CONCLUSIONS: New effective sources for bakanae resistance were identified on rice chromosomes 1 and 4 and tools for resistance breeding are provided.

20.
PLoS One ; 12(3): e0173313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301509

RESUMO

A collection of 112 winter barley varieties (Hordeum vulgare L.) was grown in the field for two years (2008/09 and 2009/10) in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV) strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD) for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09) and higher in 2010 (0.29). Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD). Overall, heritability (H2) was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD) and genome-wide association study (GWAS). Marker-trait associations (MTA) were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools.


Assuntos
Parede Celular/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla , Hordeum/genética , Polímeros/metabolismo , Desequilíbrio de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA