Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(17): e202300999, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771651

RESUMO

High-entropy materials (HEMs) have been explored as high-capacity cathode materials for sodium-ion batteries (SIBs) due to their excellent structural stability and abundant metal redox sites. Among them, high-entropy sulfides (HESs) have greater potential and more extensive research than high-entropy oxides, as they exhibit higher charging voltage and theoretical capacity as cathodes. Furthermore, alkali metal doping of HESs can further enhance their performance and broaden their application fields. Inspired by the cocktail effect of HEMs, we performed the first theoretical calculation of the properties of Na(MnFeCoNi)1/2S and its Li-doped derivative, Na7/8Li1/8(MnFeCoNi)1/2S, to understand their potential as SIB cathode materials. Using density functional theory based on first principles, we investigated the structure and electronic characteristics of Na(MnFeCoNi)1/2S and Na7/8Li1/8(MnFeCoNi)1/2S, and calculated their theoretical voltage and capacity, respectively. Compared with Na(MnFeCoNi)1/2S, Na7/8Li1/8(MnFeCoNi)1/2S showed better electronic performance in reducing the band gap and increasing the density of states, ultimately providing a specific capacity of 160.3 mAh ⋅ g-1 and a charging voltage of 4.85 V in sodium-ion storage. Moreover, Na7/8Li1/8(MnFeCoNi)1/2S exhibited remarkable structural stability throughout the sodium-ion deintercalation process, thus it can be reasonably concluded that Na7/8Li1/8(MnFeCoNi)1/2S can serve as an excellent cathode material for future SIB applications.

2.
Phys Chem Chem Phys ; 26(3): 2387-2394, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168687

RESUMO

Prussian blue framework materials are expected to be the next generation of electrode materials for commercial batteries because their three-dimensional framework structures facilitate the rapid transport and storage of ions and a variety of redox processes. This work compared the calculations of the model before and after the dispersion correction, and the model considering the effect of van der Waals force was more stable. In addition, the distances between H, C and N atoms were within the range of van der Waals force. Thus it was confirmed that NH4+ was adsorbed on the Ax site in the Prussian blue framework material (AxMa[Mb(CN)6]) by van der Waals interaction, and the charge transfer was mainly achieved by the interaction between the H atom in NH4+ and the N atom in the Prussian blue framework. On this basis, the properties of NH4+ batteries were theoretically screened for the Fe-based Prussian blue analogues (PBAs) with different Ma elements (Ma = Co, Cu, Fe, Mg, Mn, Ni, V or Zn). Considering the regulating effect of different metal elements on the electronic structures of PBAs, MgFe and ZnFe PBAs as the electrode materials of NH4+ batteries are expected to show excellent electrochemical energy storage performance in organic electrolytes.

3.
Phys Chem Chem Phys ; 25(6): 4724-4731, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36661895

RESUMO

In the present work, we evaluated the hydrogen evolution reaction (HER) performance of transition metal (Co, Fe, Ni, Mn, and Mo) doped vanadium carbides (VC). In addition, the doping atoms were screened separately on the (100), (110) and (111) crystal planes to analyze the differences in HER activities. Among all the calculated models, Mn-VC(100) exhibited the best catalytic hydrogen evolution performance with a Gibbs free energy for hydrogen adsorption (ΔGH*) of 0.0012 eV. Doping Mn greatly improved the HER performance of VC(100) by enhancing the adsorption of hydrogen on the catalyst surface. The analysis of the electronic density of states and charge transfer confirmed that doping transition metal atoms into the surfaces of the VC model successfully optimized the electronic structure and promoted catalytic reaction kinetics. Besides, the relationship between the catalytic activity and pH value of different models was considered, and doping Co atoms on the (100) crystal plane could effectively modify the pH value range applicable for the efficient HER. Interestingly, even if the same metal atoms were doped, various active sites of VC models exhibited different catalytic performances due to disparate exposed crystal planes and pH values. This indicates that the main exposed crystal surfaces and the pH range of application need to be considered when selecting the appropriate doping element for the catalyst.

4.
Phys Chem Chem Phys ; 24(48): 30027-30034, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472373

RESUMO

Transition-metal dichalcogenides (TMDCs) have been modified to show excellent electrocatalytic performance for the CO2 reduction reaction (CO2RR). However, little research has been reported on the edge modification of WS2 and its electrocatalytic CO2RR. In this work, the edge structure of WS2 with W atoms exposed in the top layer was established by density functional theory calculations. Through using WS2-xTM-y (x = 1, 2 or 3; y = 1 or 2; TM = Zn, Fe, Co or Ni) models by doping TM atoms on the top layer of WS2, the effects of dopant species, doping concentration and adsorption sites on their electrocatalytic activity were investigated. Among the models, the active site for the CO2RR is the W atoms. The doping of TM atoms would affect the bond strength between W and S atoms. After the doping of TM atoms in WS2-2TM-1 ones, the electrical conduction of S atoms and the underlying W atoms can greatly be improved. Thus the catalytic activities can be significantly increased, in which the WS2-2Zn-1 model shows the best catalytic activity. The limiting potential (UL) of the CO2RR to CO on the WS2-2Zn-1 model is -0.51 V and the Gibbs energy change (ΔG) for the adsorption of intermediates on the WS2-2Zn-1 model is ΔG(COOH*) = -0.37 and ΔG(CO*) = -0.51 eV, respectively. Solvation correction showed that WS2-2Zn-1 could maintain good catalytic performance in a wide range of pH values. The present results may provide a theoretical basis for the design and synthesis of novel electrocatalysts with high performance for the CO2RR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA