Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38792676

RESUMO

The availability of new technologies for deep sequencing, including next-generation sequencing (NGS), allows for the detection of viral genome variations. The epidemiological determination of SARS-CoV-2 viral genome changes during the pandemic waves displayed the genome evolution and subsequent onset of variants over time. These variants were often associated with a different impact on viral transmission and disease severity. We investigated, in a retrospective study, the trend of SARS-CoV-2-positive samples collected from the start of the Italian pandemic (January 2020) to June 2023. In addition, viral RNAs extracted from 938 nasopharyngeal swab samples were analyzed using NGS between February 2022 and June 2023. Sequences were analyzed with bioinformatic tools to identify lineages and mutations and for phylogenetic studies. Six pandemic waves were detected. In our samples, we predominantly detected BA.2, BQ.1, BA.5.1, BA.5.2, and, more recently, XBB.1 and its subvariants. The data describe the SARS-CoV-2 genome evolution involved in viral interactions with the host and the dynamics of specific genome mutations and deletions.

2.
Microorganisms ; 11(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894036

RESUMO

Next-generation sequencing (NGS) from SARS-CoV-2-positive swabs collected during the last months of 2022 revealed a large deletion spanning ORF7b and ORF8 (426 nt) in six patients infected with the BA.5.1 Omicron variant. This extensive genome loss removed a large part of these two genes, maintaining in frame the first 22 aminoacids of ORF7b and the last three aminoacids of ORF8. Interestingly, the deleted region was flanked by two small repeats, which were likely involved in the formation of a hairpin structure. Similar rearrangements, comparable in size and location to the deletion, were also identified in 15 sequences in the NCBI database. In this group, seven out of 15 cases from the USA and Switzerland presented both the BA.5.1 variant and the same 426 nucleotides deletion. It is noteworthy that three out of six cases were detected in patients with immunodeficiency, and it is conceivable that this clinical condition could promote the replication and selection of these mutations.

3.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894085

RESUMO

Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.

4.
ACS Synth Biol ; 3(12): 935-8, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25393892

RESUMO

Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.


Assuntos
Escherichia coli/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Engenharia Metabólica/métodos , Escherichia coli/genética , Liases/genética , Liases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA