Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38943682

RESUMO

The histone methyltransferase ASH1L plays a crucial role in regulating gene expression across various organ systems during development, yet its role in brain development remains largely unexplored. Over 130 individuals with autism harbour heterozygous loss-of-function ASH1L variants, and population studies confirm it as a high-risk autism gene. Previous studies on Ash1 l deficient mice have reported autistic-like behaviours and provided insights into the underlying neuropathophysiology. In this study, we used mice with a cre-inducible deletion of Ash1 l exon 4, which results in a frame shift and premature stop codon (p.V1693Afs*2). Our investigation evaluated the impact of Ash1 l loss-of-function on survival and craniofacial skeletal development. Using a tamoxifen-inducible cre strain, we targeted Ash1 l knockout early in cortical development (Emx1-Cre-ERT2; e10.5). Immunohistochemistry was utilized to assess cortical lamination, while EdU incorporation aided in birthdating cortical neurons. Additionally, single-cell RNA sequencing was employed to compare cortical cell populations and identify genes with differential expression. At e18.5, the proportion of homozygous Ash1 l germline knockout embryos appeared normal; however, no live Ash1 l null pups were present at birth (e18.5: n = 77, P = 0.90; p0: n = 41, P = 0.00095). Notably, Ash1l-/- exhibited shortened nasal bones (n = 31, P = 0.017). In the cortical-specific knockout model, SATB2 neurons showed increased numbers (n = 6/genotype, P = 0.0001) and were distributed through the cortical plate. Birthdating revealed generation of ectopically placed deep layer neurons that express SATB2 (e13.5 injection: n = 4/genotype, P = 0.0126). Single cell RNA sequencing revealed significant differences in gene expression between control and mutant upper layer neurons, leading to distinct clustering. Pseudotime analysis indicated that the mutant cluster followed an altered cell differentiation trajectory. This study underscores the essential role of Ash1 l in postnatal survival and normal craniofacial development. In the cortex, ASH1L exerts broad effects on gene expression and is indispensable for determining the fate of upper layer cortical neurons. These findings provide valuable insights into the potential mechanisms of ASH1L neuropathology, shedding light on its significance in neurodevelopmental disorders like autism.

2.
Dev Biol ; 476: 1-10, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33757801

RESUMO

Congenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiopatias Congênitas/genética , Coração/embriologia , Animais , Aorta/embriologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Débito Cardíaco/fisiologia , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Cardiopatias Congênitas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Crista Neural/metabolismo , Fenótipo , Transdução de Sinais/genética , Fatores de Transcrição/genética
3.
Hum Mol Genet ; 29(10): 1648-1657, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32277752

RESUMO

Combined pituitary hormone deficiency (CPHD) is a genetically heterogeneous disorder caused by mutations in over 30 genes. The loss-of-function mutations in many of these genes, including orthodenticle homeobox 2 (OTX2), can present with a broad range of clinical symptoms, which provides a challenge for predicting phenotype from genotype. Another challenge in human genetics is functional evaluation of rare genetic variants that are predicted to be deleterious. Zebrafish are an excellent vertebrate model for evaluating gene function and disease pathogenesis, especially because large numbers of progeny can be obtained, overcoming the challenge of individual variation. To clarify the utility of zebrafish for the analysis of CPHD-related genes, we analyzed the effect of OTX2 loss of function in zebrafish. The otx2b gene is expressed in the developing hypothalamus, and otx2bhu3625/hu3625 fish exhibit multiple defects in the development of head structures and are not viable past 10 days post fertilization (dpf). Otx2bhu3625/hu3625 fish have a small hypothalamus and low expression of pituitary growth hormone and prolactin (prl). The gills of otx2bhu3625/hu3625 fish have weak sodium influx, consistent with the role of prolactin in osmoregulation. The otx2bhu3625/hu3625 eyes are microphthalmic with colobomas, which may underlie the inability of the mutant fish to find food. The small pituitary and eyes are associated with reduced cell proliferation and increased apoptosis evident at 3 and 5 dpf, respectively. These observations establish the zebrafish as a useful tool for the analysis of CPHD genes with variable and complex phenotypes.


Assuntos
Hormônio do Crescimento/genética , Hipopituitarismo/genética , Fatores de Transcrição Otx/genética , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Brânquias/metabolismo , Brânquias/patologia , Humanos , Hipopituitarismo/patologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/patologia , Mutação com Perda de Função/genética , Mandíbula/patologia , Prolactina/genética , Peixe-Zebra/genética
4.
Cardiovasc Res ; 116(3): 605-618, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31286141

RESUMO

AIMS: To examine the role of the basic Helix-loop-Helix (bHLH) transcription factor HAND1 in embryonic and adult myocardium. METHODS AND RESULTS: Hand1 is expressed within the cardiomyocytes of the left ventricle (LV) and myocardial cuff between embryonic days (E) 9.5-13.5. Hand gene dosage plays an important role in ventricular morphology and the contribution of Hand1 to congenital heart defects requires further interrogation. Conditional ablation of Hand1 was carried out using either Nkx2.5 knockin Cre (Nkx2.5Cre) or α-myosin heavy chain Cre (αMhc-Cre) driver. Interrogation of transcriptome data via ingenuity pathway analysis reveals several gene regulatory pathways disrupted including translation and cardiac hypertrophy-related pathways. Embryo and adult hearts were subjected to histological, functional, and molecular analyses. Myocardial deletion of Hand1 results in morphological defects that include cardiac conduction system defects, survivable interventricular septal defects, and abnormal LV papillary muscles (PMs). Resulting Hand1 conditional mutants are born at Mendelian frequencies; but the morphological alterations acquired during cardiac development result in, the mice developing diastolic heart failure. CONCLUSION: Collectively, these data reveal that HAND1 contributes to the morphogenic patterning and maturation of cardiomyocytes during embryogenesis and although survivable, indicates a role for Hand1 within the developing conduction system and PM development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Cardiopatias Congênitas/metabolismo , Insuficiência Cardíaca/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Potenciais de Ação , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diástole , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Predisposição Genética para Doença , Coração/fisiopatologia , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Insuficiência Cardíaca/embriologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Preparação de Coração Isolado , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fenótipo , Função Ventricular Esquerda , Remodelação Ventricular
5.
Circ Res ; 125(6): 575-589, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366290

RESUMO

RATIONALE: The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1). OBJECTIVE: Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. METHODS AND RESULTS: We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. CONCLUSIONS: Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Desenvolvimento Embrionário/fisiologia , Fator de Transcrição GATA4/metabolismo , Variação Genética/fisiologia , Sistema de Condução Cardíaco/fisiologia , Função Ventricular/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Fator de Transcrição GATA4/genética , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único/fisiologia , Ligação Proteica/fisiologia , Distribuição Aleatória , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cardiovasc Res ; 113(14): 1732-1742, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016838

RESUMO

AIMS: To test if a human Hand1 frame shift mutation identified in human samples is causative of hypoplastic left heart syndrome (HLHS). METHODS AND RESULTS: HLHS is a poorly understood single ventricle congenital heart defect that affects two to three infants in every 10 000 live births. The aetiologies of HLHS are largely unknown. The basic helix-loop-helix transcription factor HAND1 is required for normal heart development. Interrogation of HAND1 sequence from fixed HLHS tissues identified a somatic frame-shift mutation at Alanine 126 (NP_004812.1 p.Ala126Profs13X defined as Hand1A126fs). Hand1A126fs creates a truncated HAND1 protein that predictively functions as dominant negative. To determine if this mutation is causative of HLHS, we engineered a conditional Hand1A126fs mouse allele. Activation of this allele with Nkx2.5Cre results in E14.5 lethality accompanied by cardiac outflow tract and intraventricular septum abnormalities. Using αMHC-Cre or Mef2CAHF-Cre to activate Hand1A126fs results in reduced phenotype and limited viability. Left ventricles of Hand1A126FS mutant mice are not hypoplastic. CONCLUSIONS: Somatically acquired Hand1A126FS mutation is not causative of HLHS. Hand1A126FS mutation does exhibit embryonic lethal cardiac defects that reflect a dominant negative function supporting the critical role of Hand1 in cardiogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiopatias Congênitas/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Mutação/genética , Animais , Coração/embriologia , Proteína Homeobox Nkx-2.5/genética , Proteínas de Homeodomínio/genética , Camundongos Transgênicos , Fatores de Transcrição/genética
7.
PLoS Genet ; 13(7): e1006922, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28732025

RESUMO

Coordinated cardiomyocyte growth, differentiation, and morphogenesis are essential for heart formation. We demonstrate that the bHLH transcription factors Hand1 and Hand2 play critical regulatory roles for left ventricle (LV) cardiomyocyte proliferation and morphogenesis. Using an LV-specific Cre allele (Hand1LV-Cre), we ablate Hand1-lineage cardiomyocytes, revealing that DTA-mediated cardiomyocyte death results in a hypoplastic LV by E10.5. Once Hand1-linage cells are removed from the LV, and Hand1 expression is switched off, embryonic hearts recover by E16.5. In contrast, conditional LV loss-of-function of both Hand1 and Hand2 results in aberrant trabeculation and thickened compact zone myocardium resulting from enhanced proliferation and a breakdown of compact zone/trabecular/ventricular septal identity. Surviving Hand1;Hand2 mutants display diminished cardiac function that is rescued by concurrent ablation of Hand-null cardiomyocytes. Collectively, we conclude that, within a mixed cardiomyocyte population, removal of defective myocardium and replacement with healthy endogenous cardiomyocytes may provide an effective strategy for cardiac repair.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Ventrículos do Coração/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Morfogênese/genética , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
8.
Development ; 144(13): 2480-2489, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576769

RESUMO

The morphogenesis of the vertebrate limbs is a complex process in which cell signaling and transcriptional regulation coordinate diverse structural adaptations in diverse species. In this study, we examine the consequences of altering Hand1 dimer choice regulation within developing vertebrate limbs. Although Hand1 deletion via the limb-specific Prrx1-Cre reveals a non-essential role for Hand1 in mouse limb morphogenesis, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, results in a severe truncation of proximal-anterior limb elements. Molecular analysis reveals a non-cell-autonomous mechanism that causes widespread cell death within the embryonic limb bud. In addition, we observe changes in proximal-anterior gene regulation, including a reduction in the expression of Irx3, Irx5, Gli3 and Alx4, all of which are upregulated in Hand2 limb conditional knockouts. A reduction of Hand2 and Shh gene dosage improves the integrity of anterior limb structures, validating the importance of the Twist-family bHLH dimer pool in limb morphogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Morfogênese , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal/genética , Morte Celular/genética , Feminino , Deleção de Genes , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Mutação/genética , Fenótipo , Fosforilação , Transdução de Sinais/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA