Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 80(1): 254-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22006569

RESUMO

Because epithelial cells are the major cell type productively infected with Chlamydia during genital tract infections, the overall goal of our research was to understand the contribution of infected epithelial cells to the host defense. We previously showed that Toll-like receptor 3 (TLR3) is the critical pattern recognition receptor in oviduct epithelial (OE) cells that is stimulated during Chlamydia infection, resulting in the synthesis of beta interferon (IFN-ß). Here, we present data that implicates TLR3 in the expression of a multitude of other innate-inflammatory immune modulators including interleukin-6 (IL-6), CXCL10, CXCL16, and CCL5. We demonstrate that Chlamydia-induced expression of these cytokines is severely disrupted in TLR3-deficient OE cells, whereas Chlamydia replication in the TLR3-deficient cells is more efficient than in wild-type OE cells. Pretreatment of the TLR3-deficient OE cells with 50 U of IFN-ß/ml prior to infection diminished Chlamydia replication and restored the ability of Chlamydia infection to induce IL-6, CXCL10, and CCL5 expression in TLR3-deficient OE cells; however, CXCL16 induction was not restored by IFN-ß preincubation. Our findings were corroborated in pathway-focused PCR arrays, which demonstrated a multitude of different inflammatory genes that were defectively regulated during Chlamydia infection of the TLR3-deficient OE cells, and we found that some of these genes were induced only when IFN-ß was added prior to infection. Our OE cell data implicate TLR3 as an essential inducer of IFN-ß and other inflammatory mediators by epithelial cells during Chlamydia infection and highlight the contribution of TLR3 to the inflammatory cytokine response.


Assuntos
Chlamydia muridarum/imunologia , Citocinas/metabolismo , Células Epiteliais/imunologia , Imunidade Inata , Oviductos/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Células Cultivadas , Infecções por Chlamydia/imunologia , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 3 Toll-Like/deficiência
2.
J Immunol ; 185(11): 6689-97, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20974982

RESUMO

Epithelial cells lining the murine genital tract act as sentinels for microbial infection, play a major role in the initiation of the early inflammatory response, and can secrete factors that modulate the adaptive immune response when infected with Chlamydia. C. muridarum-infected murine oviduct epithelial cells secrete the inflammatory cytokines IL-6 and GM-CSF in a TLR2-dependent manner. Further, C. muridarum infection induces IFN-ß synthesis in the oviduct epithelial cells in a TRIF-dependent manner. Because murine oviduct epithelial cells express TLR3 but not TLRs 4, 7, 8, or 9, we hypothesized that TLR3 or an unknown TRIF-dependent pattern recognition receptor was the critical receptor for IFN-ß production. To investigate the role of TLR3 in the Chlamydia-induced IFN-ß response in oviduct epithelial cells, we used small interfering RNA, dominant-negative TLR3 mutants, and TLR3-deficient oviduct epithelial cells to show that the IFN-ß secreted during C. muridarum infection requires a functional TLR3. Interestingly, we demonstrate that the TLR3 signaling pathway is not required for IFN-ß synthesis in C. muridarum-infected macrophages, suggesting that there are alternate and redundant pathways to Chlamydia-induced IFN-ß synthesis that seem to be dependent upon the cell type infected. Finally, because there is no obvious dsRNA molecule associated with Chlamydia infection, the requirement for TLR3 in Chlamydia-induced IFN-ß synthesis in infected oviduct epithelial cells implicates a novel ligand that binds to and signals through TLR3.


Assuntos
Chlamydia muridarum/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Interferon Tipo I/biossíntese , Oviductos/imunologia , Oviductos/microbiologia , Receptor 3 Toll-Like/fisiologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Linhagem Celular , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/patologia , Células Clonais , Células Epiteliais/metabolismo , Feminino , Interferon Tipo I/metabolismo , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oviductos/citologia , Oviductos/metabolismo , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/metabolismo
3.
Endocrinology ; 145(11): 4866-79, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15271874

RESUMO

FSH is a critical hormone regulator of gonadal function that is secreted from the pituitary gonadotrope cell. Human patients and animal models with mutations in the LHX3 LIM-homeodomain transcription factor gene exhibit complex endocrine diseases, including reproductive disorders with loss of FSH. We demonstrate that in both heterologous and pituitary gonadotrope cells, specific LHX3 isoforms activate the FSH beta-subunit promoter, but not the proximal LHbeta promoter. The related LHX4 mammalian transcription factor can also induce FSHbeta promoter transcription, but the homologous Drosophila protein LIM3 cannot. The actions of LHX3 are specifically blocked by a dominant negative LHX3 protein containing a Kruppel-associated box domain. Six LHX3-binding sites were characterized within the FSHbeta promoter, including three within a proximal region that also mediates gene regulation by other transcription factors and activin. Mutations of the proximal binding sites demonstrate their importance for LHX3 induction of the FSHbeta promoter and basal promoter activity in gonadotrope cells. Using quantitative methods, we show that the responses of the FSHbeta promoter to activin do not require induction of the LHX3 gene. By comparative genomics using the human FSHbeta promoter, we demonstrate structural and functional conservation of promoter induction by LHX3. We conclude that the LHX3 LIM homeodomain transcription factor is involved in activation of the FSH beta-subunit gene in the pituitary gonadotrope cell.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipófise/fisiologia , Ativinas/farmacologia , Animais , Sequência de Bases , Sítios de Ligação/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/química , Humanos , Subunidades beta de Inibinas/farmacologia , Rim/citologia , Proteínas com Homeodomínio LIM , Camundongos , Dados de Sequência Molecular , Mutagênese , Hipófise/citologia , Regiões Promotoras Genéticas/fisiologia , Estrutura Terciária de Proteína , Fatores de Processamento de RNA , Suínos , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA