Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Integr Environ Assess Manag ; 19(5): 1235-1253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35049141

RESUMO

Bioaccumulation assessments conducted by regulatory agencies worldwide use a variety of methods, types of data, metrics, and categorization criteria. Lines of evidence (LoE) for bioaccumulation assessment can include bioaccumulation metrics such as in vivo bioconcentration factor (BCF) and biomagnification factor (BMF) data measured from standardized laboratory experiments, and field (monitoring) data such as BMFs, bioaccumulation factors (BAFs), and trophic magnification factors (TMFs). In silico predictions from mass-balance models and quantitative structure-activity relationships (QSARs) and a combination of in vitro biotransformation rates and in vitro-in vivo extrapolation (IVIVE) models can also be used. The myriad bioaccumulation metrics and categorization criteria and underlying uncertainty in measured or modeled data can make decision-making challenging. A weight of evidence (WoE) approach is recommended to address uncertainty. The Bioaccumulation Assessment Tool (BAT) guides a user through the process of collecting and generating various LoE required for assessing the bioaccumulation of neutral and ionizable organic chemicals in aquatic (water-respiring) and air-breathing organisms. The BAT includes data evaluation templates (DETs) to critically evaluate the reliability of the LoE used in the assessment. The DETs were developed from standardized testing guidance. The approach used in the BAT is consistent with OECD and SETAC WoE principles and facilitates the implementation of chemical policy objectives in chemical assessment and management. The recommended methods are also iterative and tiered, providing pragmatic methods to reduce unnecessary animal testing. General concepts of the BAT are presented and case study applications of the tool for hexachlorobenzene (HCB) and ß-hexachlorocyclohexane (ß-HCH) are demonstrated. The BAT provides a consistent and transparent WoE framework to address uncertainty in bioaccumulation assessment and is envisaged to evolve with scientific and regulatory developments. Integr Environ Assess Manag 2023;19:1235-1253. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Poluentes Químicos da Água , Animais , Bioacumulação , Reprodutibilidade dos Testes , Incerteza , Hexaclorobenzeno , Poluentes Químicos da Água/análise
4.
J Expo Sci Environ Epidemiol ; 32(6): 877-884, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36347933

RESUMO

BACKGROUND: Threshold of Toxicological Concern (TTC) approaches are used for chemical safety assessment and risk-based priority setting for data poor chemicals. TTCs are derived from in vivo No Observed Effect Level (NOEL) datasets involving an external administered dose from a single exposure route, e.g., oral intake rate. Thus, a route-specific TTC can only be compared to a route-specific exposure estimate and such TTCs cannot be used for other exposure scenarios such as aggregate exposures. OBJECTIVE: Develop and apply a method for deriving internal TTCs (iTTCs) that can be used in chemical assessments for multiple route-specific exposures (e.g., oral, inhalation or dermal) or aggregate exposures. METHODS: Chemical-specific toxicokinetics (TK) data and models are applied to calculate internal concentrations (whole-body and blood) from the reported administered oral dose NOELs used to derive the Munro TTCs. The new iTTCs are calculated from the 5th percentile of cumulative distributions of internal NOELs and the commonly applied uncertainty factor of 100 to extrapolate animal testing data for applications in human health assessment. RESULTS: The new iTTCs for whole-body and blood are 0.5 nmol/kg and 0.1 nmol/L, respectively. Because the iTTCs are expressed on a molar basis they are readily converted to chemical mass iTTCs using the molar mass of the chemical of interest. For example, the median molar mass in the dataset is 220 g/mol corresponding to an iTTC of 22 ng/L-blood (22 pg/mL-blood). The iTTCs are considered broadly applicable for many organic chemicals except those that are genotoxic or acetylcholinesterase inhibitors. The new iTTCs can be compared with measured or estimated whole-body or blood exposure concentrations for chemical safety screening and priority-setting. SIGNIFICANCE: Existing Threshold of Toxicological Concern (TTC) approaches are limited in their applications for route-specific exposure scenarios only and are not suitable for chemical risk and safety assessments under conditions of aggregate exposure. New internal Threshold of Toxicological Concern (iTTC) values are developed to address data gaps in chemical safety estimation for multi-route and aggregate exposures.


Assuntos
Toxicocinética , Humanos , Inibidores da Colinesterase , Animais , Testes de Toxicidade , Nível de Efeito Adverso não Observado , Mutagênicos , Medição de Risco
5.
Integr Environ Assess Manag ; 18(6): 1722-1732, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35238162

RESUMO

The National Pollutant Release Inventory (NPRI) is a Canadian inventory of facility-reported data on releases, transfers, and disposals of over 300 pollutants, but it does not contain information on chemical properties or other characteristics critical to understanding environmental and human health risks. To reconcile this gap, we use the Risk Assessment IDentification And Ranking (RAIDAR) model to integrate NPRI release data with chemical property information in a multimedia mass balance model to combine exposure estimates with toxicity hazard data yielding an estimate of risk for 198 NPRI organic substances reported in 2010-2019. The presented case study further corroborates the hypothesis that risk-based ranking gives rise to different chemical priorities versus ranking based on release quantity alone. Chemicals like propane and hexane (except n-hexane) are in the top 10 highest-ranked organic substances based on emission quantities reported to NPRI but are ranked outside the top 10 based on corresponding regional-scale risk estimates. On the contrary, dioxins and furans are ranked very low based on emissions quantities reported to NPRI but are ranked higher based on corresponding risk estimates. The results also suggest that although quantities of some NPRI organic pollutant releases change over time, the ensuing risk estimates are not always directly proportional to these changes. This can be explained by changes in mode of entry to the environment that can influence the overall fate and exposure of the same chemicals, highlighting the complex dynamics that can occur when simulating fate and risk as opposed to quantity alone. Limitations are discussed and recommendations are provided for improving the priority setting methods, including reducing the uncertainty of the NPRI data and the need for multimedia models to address point source emissions. Integr Environ Assess Manag 2022;18:1722-1732. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/toxicidade , Multimídia , Canadá , Ecotoxicologia , Medição de Risco , Monitoramento Ambiental
6.
Environ Health Perspect ; 129(12): 127006, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882502

RESUMO

BACKGROUND: Large numbers of chemicals require evaluation to determine if their production and use pose potential risks to ecological and human health. For most chemicals, the inadequacy and uncertainty of chemical-specific data severely limit the application of exposure- and risk-based methods for screening-level assessments, priority setting, and effective management. OBJECTIVE: We developed and evaluated a holistic, mechanistic modeling framework for ecological and human health assessments to support the safe and sustainable production, use, and disposal of organic chemicals. METHODS: We consolidated various models for simulating the PROduction-To-EXposure (PROTEX) continuum with empirical data sets and models for predicting chemical property and use function information to enable high-throughput (HT) exposure and risk estimation. The new PROTEX-HT framework calculates exposure and risk by integrating mechanistic computational modules describing chemical behavior and fate in the socioeconomic system (i.e., life cycle emissions), natural and indoor environments, various ecological receptors, and humans. PROTEX-HT requires only molecular structure and chemical tonnage (i.e., annual production or consumption volume) as input information. We evaluated the PROTEX-HT framework using 95 organic chemicals commercialized in the United States and demonstrated its application in various exposure and risk assessment contexts. RESULTS: Seventy-nine percent and 97% of the PROTEX-HT human exposure predictions were within one and two orders of magnitude, respectively, of independent human exposure estimates inferred from biomonitoring data. PROTEX-HT supported screening and ranking chemicals based on various exposure and risk metrics, setting chemical-specific maximum allowable tonnage based on user-defined toxicological thresholds, and identifying the most relevant emission sources, environmental media, and exposure routes of concern in the PROTEX continuum. The case study shows that high chemical tonnage did not necessarily result in high exposure or health risks. CONCLUSION: Requiring only two chemical-specific pieces of information, PROTEX-HT enables efficient screening-level evaluations of existing and premanufacture chemicals in various exposure- and risk-based contexts. https://doi.org/10.1289/EHP9372.


Assuntos
Exposição Ambiental , Compostos Orgânicos , Humanos , Compostos Orgânicos/toxicidade , Medição de Risco , Incerteza , Estados Unidos
7.
Integr Environ Assess Manag ; 17(5): 911-925, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33620129

RESUMO

Bioaccumulation (B) assessment is challenging because there are various B-metrics from laboratory and field studies, multiple criteria and thresholds for classifying bioaccumulative (B), very bioaccumulative (vB), and not bioaccumulative (nB) chemicals, as well as inherent variability and uncertainty in the data. These challenges can be met using a weight of evidence (WoE) approach. The Bioaccumulation Assessment Tool (BAT) provides a transparent WoE assessment framework that follows Organisation for Economic Co-operation and Development (OECD) principles for performing a WoE analysis. The BAT guides an evaluator through the process of data collection, generation, evaluation, and integration of various lines of evidence (LoE) (i.e., B-metrics) to inform decision-making. Phenanthrene (PHE) is a naturally occurring chemical for which extensive B and toxicokinetics data are available. A B assessment for PHE using the BAT is described that includes a critical evaluation of 74 measured in vivo LoE for fish and invertebrate species from laboratory and field studies. The number of LoE are reasonably well balanced across taxa (i.e., fish and invertebrates) and the different B-metrics. Additionally, in silico and in vitro biotransformation rate estimates and corresponding model-predicted B-metrics are included as corroborating evidence. Application of the BAT provides a consistent, coherent, and scientifically defensible WoE evaluation to conclude that PHE is not bioaccumulative (nB) because the overwhelming majority of the bioconcentration, bioaccumulation, and biomagnification metrics for both fish and invertebrates are below regulatory thresholds. An analysis of the relevant data using fugacity ratios is also provided, showing that PHE does not biomagnify in aquatic food webs. The critical review identifies recommendations to increase the consistency of B assessments, such as improved standardization of B testing guidelines, data reporting requirements for invertebrate studies, and consideration of temperature and salinity effects on certain B-metrics. Integr Environ Assess Manag 2021;17:911-925. © 2021 Concawe. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Fenantrenos , Animais , Bioacumulação , Peixes , Cadeia Alimentar , Fenantrenos/toxicidade , Medição de Risco
8.
Environ Sci Technol ; 52(24): 14235-14244, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30407800

RESUMO

Exposure- and risk-based assessments for chemicals used indoors or applied to humans (i.e., in near-field environments) necessitate an aggregate exposure pathway framework that aligns chemical exposure information from use sources to internal dose and eventually to their potential for health effects. Such a source-to-effect continuum is advocated to balance the complexity of human exposure and the insufficiency of relevant data for thousands of existing and emerging chemicals. Here, we introduce the Risk Assessment, IDentification And Ranking-Indoor and Consumer Exposure (RAIDAR-ICE) model, which establishes an integrated framework to evaluate human exposure due to indoor use and direct application of chemicals to humans. As a model evaluation, RAIDAR-ICE faithfully reproduces exposure estimates inferred from biomonitoring data for 37 chemicals with direct and indirect near-field sources. RAIDAR-ICE generates different rankings for 131 chemicals based on different exposure- and risk-based assessment metrics, demonstrating its versatility for diverse chemical screening goals. When coupled with a far-field RAIDAR model, the near-field RAIDAR-ICE model enables assessment of aggregate human exposure. Overall, RAIDAR-ICE is a powerful tool for high-throughput screening and prioritization of human exposure to neutral organic chemicals used indoors.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Humanos , Compostos Orgânicos , Medição de Risco
9.
J Agric Food Chem ; 63(31): 6866-75, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26230997

RESUMO

Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model framework for estimating emissions of an aromatic hydrocarbon fluid used in ECs based on the results of spray chamber experiments that simulate fate as the fluids become subject to volatilization, sorption to soil, and biodegradation. The results indicate the need to treat the volatilization losses in three stages: (i) losses during spraying, (ii) losses up to 12 h after spraying in which the soil is coated with the ECs, and (iii) subsequent longer term losses in which the ECs become increasingly sorbed and subject to biodegradation. A mass balance model, the agrochemical derived volatile organic compound air transfer evaluation (ADVOCATE) tool, is developed, treating the ECs as seven hydrocarbon component groups, to estimate the volatilization and biodegradation losses using parameters fitted to empirical data. This enables losses to be estimated for each hydrocarbon component under field conditions, thereby providing a basis for improved estimation of ozone formation potential and for designing ECs that have lower emissions.


Assuntos
Hidrocarbonetos Aromáticos/química , Praguicidas/química , Poluentes do Solo/química , Agricultura , Cinética , Modelos Teóricos , Volatilização
10.
Environ Sci Technol ; 38(17): 4619-26, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15461171

RESUMO

A "multiplier" method is developed by which multimedia mass balance fugacity models designed to describe the fate of a single chemical species can be applied to chemicals that exist as several interconverting species. The method is applicable only when observed ratios of species concentrations in each phase are relatively constant and there is thus no need to define interspecies conversion rates. It involves the compilation of conventional transformation and intermedia transport rate expressions for a single, selected key species, and then a multiplier, Ri, is deduced for each of the other species. The total rate applicable to all species is calculated as the product of the rate for the single key species and a combined multiplier (1 + R2 + R3 + etc.). The theory is developed and illustrated by two examples. Limitations of the method are discussed, especially under conditions when conversion rates are uncertain. The advantage of this approach is that existing fugacity and concentration-based models that describe the fate of single-species chemicals can be readily adapted to estimate the fate of multispecies substances such as mercury which display relatively constant species proportions in each medium.


Assuntos
Poluentes Ambientais , Modelos Químicos , Compostos de Mercúrio/química
11.
Environ Res ; 95(3): 298-304, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15220064

RESUMO

We argue that the need to reduce human exposure to mercury in the Great Lakes Basin and thus reduce the risk of adverse effects can be accomplished only by reducing the quantity of all mercury species cycling in the ecosystem. It is pointed out that much can be learned from experiences with PCBs. PCB concentrations and exposures have been reduced, in part, because a clear picture has been established of relative sources and PCB' s environmental fate in the form of mass balance models, which document the "big picture" of PCB behavior at a range of scales. It is suggested that a similar strategy is needed for mercury as part of the effort to protect human health throughout the entire Great Lakes ecosystem.


Assuntos
Exposição Ambiental , Poluentes Ambientais/análise , Mercúrio/análise , Modelos Teóricos , Ecossistema , Great Lakes Region , Humanos , Mercúrio/química , Bifenilos Policlorados/efeitos adversos , Bifenilos Policlorados/análise , Saúde Pública , Medição de Risco
12.
Environ Toxicol Chem ; 21(8): 1628-37, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12152762

RESUMO

A continental-scale dynamic mass budget for toxaphene in North America is presented, based on available information on physicochemical properties, usage patterns, and reported environmental concentrations and using the Berkeley-Trent North American mass balance contaminant fate model (BETR North America). The model describes contaminant fate in 24 ecological regions of North America, including advective transport between regions in the atmosphere, freshwater, and near-shore coastal water. The dynamic mass budget accounts for environmental partitioning, transport, and degradation of the estimated 534 million kg of toxaphene that were used in North America as an insecticide and piscicide between 1945 and 2000. Satisfactory agreement exists between model results and current and historically reported concentrations of toxaphene in air, water, soil, and sediments throughout North America. An estimated 15 million kg of toxaphene are believed to remain in active circulation in the North American environment in the year 2000, with the majority in soils in the southern United States and Mexico, where historic usage was highest. Approximately 70% of total toxaphene deposition from the atmosphere to the Great Lakes is attributed to sources outside the Great Lakes Basin, and an estimated total of 3.9 million kg of toxaphene have been transported to this region from other parts of the continent. The toxaphene mass budget presented here is believed to be the first reported continental-scale multimedia mass budget for any contaminant.


Assuntos
Poluentes Ambientais/análise , Inseticidas/análise , Modelos Teóricos , Toxafeno/análise , Agricultura , Movimentos do Ar , Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Great Lakes Region , Inseticidas/metabolismo , América do Norte , Toxafeno/metabolismo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA