Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
2.
Mol Cell Proteomics ; 23(3): 100724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266916

RESUMO

We propose a pipeline that combines AlphaFold2 (AF2) and crosslinking mass spectrometry (XL-MS) to model the structure of proteins with multiple conformations. The pipeline consists of two main steps: ensemble generation using AF2 and conformer selection using XL-MS data. For conformer selection, we developed two scores-the monolink probability score (MP) and the crosslink probability score (XLP)-both of which are based on residue depth from the protein surface. We benchmarked MP and XLP on a large dataset of decoy protein structures and showed that our scores outperform previously developed scores. We then tested our methodology on three proteins having an open and closed conformation in the Protein Data Bank: Complement component 3 (C3), luciferase, and glutamine-binding periplasmic protein, first generating ensembles using AF2, which were then screened for the open and closed conformations using experimental XL-MS data. In five out of six cases, the most accurate model within the AF2 ensembles-or a conformation within 1 Å of this model-was identified using crosslinks, as assessed through the XLP score. In the remaining case, only the monolinks (assessed through the MP score) successfully identified the open conformation of glutamine-binding periplasmic protein, and these results were further improved by including the "occupancy" of the monolinks. This serves as a compelling proof-of-concept for the effectiveness of monolinks. In contrast, the AF2 assessment score was only able to identify the most accurate conformation in two out of six cases. Our results highlight the complementarity of AF2 with experimental methods like XL-MS, with the MP and XLP scores providing reliable metrics to assess the quality of the predicted models. The MP and XLP scoring functions mentioned above are available at https://gitlab.com/topf-lab/xlms-tools.


Assuntos
Glutamina , Proteínas Periplásmicas , Furilfuramida , Espectrometria de Massas , Conformação Proteica , Proteínas de Membrana
3.
Nat Commun ; 15(1): 444, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200043

RESUMO

Cryo-EM experiments produce images of macromolecular assemblies that are combined to produce three-dimensional density maps. Typically, atomic models of the constituent molecules are fitted into these maps, followed by a density-guided refinement. We introduce TEMPy-ReFF, a method for atomic structure refinement in cryo-EM density maps. Our method represents atomic positions as components of a Gaussian mixture model, utilising their variances as B-factors, which are used to derive an ensemble description. Extensively tested on a substantial dataset of 229 cryo-EM maps from EMDB ranging in resolution from 2.1-4.9 Å with corresponding PDB and CERES atomic models, our results demonstrate that TEMPy-ReFF ensembles provide a superior representation of cryo-EM maps. On a single-model basis, it performs similarly to the CERES re-refinement protocol, although there are cases where it provides a better fit to the map. Furthermore, our method enables the creation of composite maps free of boundary artefacts. TEMPy-ReFF is useful for better interpretation of flexible structures, such as those involving RNA, DNA or ligands.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Artefatos , RNA , Humanos , Microscopia Crioeletrônica , Distribuição Normal , Convulsões
4.
J Med Chem ; 67(1): 199-212, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157562

RESUMO

Cryo-electron microscopy (cryo-EM), through resolution advancements, has become pivotal in structure-based drug discovery. However, most cryo-EM structures are solved at 3-4 Å resolution, posing challenges for small-molecule docking and structure-based virtual screening due to issues in the precise positioning of ligands and the surrounding side chains. We present ChemEM, a software package that employs cryo-EM data for the accurate docking of one or multiple ligands in a protein-binding site. Validated against a highly curated benchmark of high- and medium-resolution cryo-EM structures and the corresponding high-resolution controls, ChemEM displayed impressive performance, accurately placing ligands in all but one case, often surpassing cryo-EM PDB-deposited solutions. Even without including the cryo-EM density, the ChemEM scoring function outperformed the well-established AutoDock Vina score. Using ChemEM, we illustrate that valuable information can be extracted from maps at medium resolution and underline the utility of cryo-EM structures for drug discovery.


Assuntos
Conformação Proteica , Microscopia Crioeletrônica , Sítios de Ligação , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA