Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095361

RESUMO

In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here, we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them, and differentiate into pericytes and vascular smooth muscle cells. Genetic ablation of this population affects the organization of the skin vascular network. Our results reveal the heterogeneity and extended potential of the BC population in mice, which gives rise to mural cells, in addition to previously described neurons, Schwann cells, and melanocytes. Finally, our results suggest that mural specification of BC derivatives takes place before their migration along nerves to the mouse skin.


Assuntos
Crista Neural , Tubo Neural , Camundongos , Animais , Crista Neural/fisiologia , Neuroglia , Células de Schwann , Pele , Diferenciação Celular/fisiologia
2.
J Invest Dermatol ; 143(8): 1378-1387, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330719

RESUMO

Neurofibromatosis type 1 (NF1) is caused by a nonfunctional copy of the NF1 tumor suppressor gene that predisposes patients to the development of cutaneous neurofibromas (cNFs), the skin tumor that is the hallmark of this condition. Innumerable benign cNFs, each appearing by an independent somatic inactivation of the remaining functional NF1 allele, form in nearly all patients with NF1. One of the limitations in developing a treatment for cNFs is an incomplete understanding of the underlying pathophysiology and limitations in experimental modeling. Recent advances in preclinical in vitro and in vivo modeling have substantially enhanced our understanding of cNF biology and created unprecedented opportunities for therapeutic discovery. We discuss the current state of cNF preclinical in vitro and in vivo model systems, including two- and three-dimensional cell cultures, organoids, genetically engineered mice, patient-derived xenografts, and porcine models. We highlight the models' relationship to human cNFs and how they can be used to gain insight into cNF development and therapeutic discovery.


Assuntos
Neurofibroma , Neurofibromatose 1 , Neoplasias Cutâneas , Camundongos , Humanos , Animais , Suínos , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Mutação , Neurofibroma/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Alelos
3.
Transl Res ; 261: 16-27, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37331503

RESUMO

Cutaneous neurofibromas (cNFs) are a hallmark of patients with the neurofibromatosis type 1 (NF1) genetic disorder. These benign nerve sheath tumors, which can amount to thousands, develop from puberty onward, often cause pain and are considered by patients to be the primary burden of the disease. Mutations of NF1, encoding a negative regulator of the RAS signaling pathway, in the Schwann cell (SCs) lineage are considered to be at the origin of cNFs. The mechanisms governing cNFs development are poorly understood, and therapeutics to reduce cNFs are missing, mainly due to the lack of appropriate animal models. To address this, we designed the Nf1-KO mouse model that develops cNFs. Using this model, we found that cNFs development is a singular event and goes through 3 successive stages: initiation, progression, and stabilization characterized by changes in the proliferative and MAPK activities of tumor SCs. We found that skin trauma accelerated the development of cNFs and further used this model to explore the efficacy of the MEK inhibitor binimetinib to cure these tumors. We showed that while topically delivered binimetinib has a selective and minor effect on mature cNFs, the same drug prevents their development over long periods.


Assuntos
Neurofibroma , Neurofibromatose 1 , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibroma/tratamento farmacológico , Neurofibroma/genética , Benzimidazóis , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Ativadas por Mitógeno
4.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35019839

RESUMO

Peripheral nerves are vascularized by a dense network of blood vessels to guarantee their complex function. Despite the crucial role of vascularization to ensure nerve homeostasis and regeneration, the mechanisms governing nerve invasion by blood vessels remain poorly understood. We found, in mice, that the sciatic nerve invasion by blood vessels begins around embryonic day 16 and continues until birth. Interestingly, intra-nervous blood vessel density significantly decreases during post-natal period, starting from P10. We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during post-natal period.


Assuntos
Neovascularização Fisiológica , Fibras Nervosas Mielinizadas/fisiologia , Netrina-1/genética , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Animais , Movimento Celular , Feminino , Masculino , Camundongos , Neovascularização Patológica , Regeneração Nervosa , Netrina-1/metabolismo , Nervo Isquiático/crescimento & desenvolvimento
5.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884531

RESUMO

Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 µg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cultura de Células em Três Dimensões/métodos , Embrião de Mamíferos/citologia , Neurônios/citologia , Polissacarídeos/química , Alicerces Teciduais/química , Animais , Adesão Celular , Sobrevivência Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Porosidade , Engenharia Tecidual
6.
Cell ; 180(4): 780-795.e25, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059781

RESUMO

The cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized multichannel images from light sheet microscopy, enabling the construction, analysis, and visualization of vascular graphs composed of over 100 million vessel segments. We generated datasets from over 20 mouse brains, with labeled arteries, veins, and capillaries according to their anatomical regions. We characterized the organization of the vascular network across brain regions, highlighting local adaptations and functional correlates. We propose a classification of cortical regions based on the vascular topology. Finally, we analysed brain-wide rearrangements of the vasculature in animal models of congenital deafness and ischemic stroke, revealing that vascular plasticity and remodeling adopt diverging rules in different models.


Assuntos
Adaptação Fisiológica , Encéfalo/irrigação sanguínea , Capilares/anatomia & histologia , Artérias Cerebrais/anatomia & histologia , Veias Cerebrais/anatomia & histologia , Remodelação Vascular , Animais , Capilares/patologia , Artérias Cerebrais/patologia , Veias Cerebrais/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Privação Sensorial , Estresse Psicológico/etiologia , Estresse Psicológico/patologia , Acidente Vascular Cerebral/patologia
7.
Acta Neuropathol ; 138(3): 457-476, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31011859

RESUMO

Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological conditions. However, how SC invade the CNS to remyelinate central axons remains undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous transplantation in the demyelinated spinal cord. The data highlight for the first time that SC migrate preferentially along blood vessels in perivascular extracellular matrix (ECM), avoiding CNS myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue of a dual mode of action of Eph/ephrin signaling. Indeed, EphrinB3, enriched in myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and triggers their preferential adhesion to ECM components, such as fibronectin via integrinß1 interactions. This complex interplay enhances SC migration along the blood vessel network and together with lesion-induced vascular remodeling facilitates their timely invasion of the lesion site. These novel findings elucidate the mechanism by which SC invade and contribute to spinal cord repair.


Assuntos
Vasos Sanguíneos , Movimento Celular/fisiologia , Efrina-B3/metabolismo , Remielinização/fisiologia , Células de Schwann/fisiologia , Medula Espinal/metabolismo , Animais , Doenças Desmielinizantes/patologia , Feminino , Fibronectinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Medula Espinal/patologia
8.
Cancer Discov ; 9(1): 130-147, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348676

RESUMO

Patients carrying an inactive NF1 allele develop tumors of Schwann cell origin called neurofibromas (NF). Genetically engineered mouse models have significantly enriched our understanding of plexiform forms of NFs (pNF). However, this has not been the case for cutaneous neurofibromas (cNF), observed in all NF1 patients, as no previous model recapitulates their development. Here, we show that conditional Nf1 inactivation in Prss56-positive boundary cap cells leads to bona fide pNFs and cNFs. This work identifies subepidermal glia as a likely candidate for the cellular origin of cNFs and provides insights on disease mechanisms, revealing a long, multistep pathologic process in which inflammation-related signals play a pivotal role. This new mouse model is an important asset for future clinical and therapeutic investigations of NF1-associated neurofibromas. SIGNIFICANCE: Patients affected by NF1 develop numerous cNFs. We present a mouse model that faithfully recapitulates cNFs, identify a candidate cell type at their origin, analyze the steps involved in their formation, and show that their development is dramatically accelerated by skin injury. These findings have important clinical/therapeutic implications.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neurofibroma/metabolismo , Neurofibromatose 1/metabolismo , Neurofibromina 1/genética , Células de Schwann/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Mutação , Neurofibroma/etiologia , Neurofibroma/genética , Neurofibroma/fisiopatologia , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromatose 1/fisiopatologia , Células de Schwann/fisiologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/fisiopatologia
9.
PLoS Genet ; 14(3): e1007244, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529029

RESUMO

A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.


Assuntos
Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Erros de Refração/genética , Serina Proteases/metabolismo , Animais , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Olho/citologia , Olho/embriologia , Feminino , Humanos , Hiperopia/genética , Masculino , Camundongos Mutantes , Camundongos Transgênicos , Miopia/genética , Miopia/patologia , Neuroglia/metabolismo , Refração Ocular/genética , Refração Ocular/fisiologia , Erros de Refração/prevenção & controle , Serina Proteases/genética
10.
Development ; 145(1)2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158447

RESUMO

Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20-deficient embryos. Genetic lineage tracing in Krox20-/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20-expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve.


Assuntos
Valva Aórtica/anormalidades , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/embriologia , Miocárdio/metabolismo , Crista Neural/metabolismo , Animais , Valva Aórtica/citologia , Valva Aórtica/embriologia , Doença da Válvula Aórtica Bicúspide , Proteína 2 de Resposta de Crescimento Precoce/genética , Células Endoteliais/citologia , Camundongos , Camundongos Knockout , Miocárdio/citologia , Crista Neural/citologia
11.
Curr Opin Neurobiol ; 47: 209-215, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29174469

RESUMO

Broad plasticity of the peripheral glia is an emerging concept during development of the peripheral nervous system (PNS). Recent studies have identified the neural crest-derived boundary caps (BCs), as a multitask stem cell population of the developing PNS. BC progeny migrate along the nerves to provide the major glial component of nerve roots and nerve terminals in the skin. Strikingly, those two locations constitute the privileged sites for development of benign peripheral nerve sheath tumors called neurofibromas in patients with neurofibromatosis type 1 (NF1), making BCs attractive candidates for the 'cell of origin' of this disease. Here, we review these exciting findings, focusing on the origin and novel functions of BCs. We further discuss the heterogeneity of BCs, and address their implication in the pathogenesis of NF1.


Assuntos
Crista Neural/citologia , Células-Tronco Neurais/citologia , Neurofibromatose 1/fisiopatologia , Neuroglia/citologia , Sistema Nervoso Periférico/citologia , Animais , Humanos , Crista Neural/patologia , Crista Neural/fisiologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Neuroglia/patologia , Neuroglia/fisiologia , Sistema Nervoso Periférico/patologia , Sistema Nervoso Periférico/fisiologia
12.
Science ; 357(6346)2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684471

RESUMO

Adrenaline is a fundamental circulating hormone for bodily responses to internal and external stressors. Chromaffin cells of the adrenal medulla (AM) represent the main neuroendocrine adrenergic component and are believed to differentiate from neural crest cells. We demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs). SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland, where they detach from the nerve and form postsynaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell type specification. Subsequently, these programs down-regulate SCP-gene and up-regulate chromaffin cell-gene networks. The AM forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.


Assuntos
Medula Suprarrenal/embriologia , Diferenciação Celular , Células Cromafins/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Neurais/citologia , Células Neuroendócrinas/citologia , Células de Schwann/citologia , Medula Suprarrenal/citologia , Animais , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Mutantes , Proteína Proteolipídica de Mielina/genética , Crista Neural/citologia , Nervos Periféricos/citologia , Fatores de Transcrição SOXE/genética , Nicho de Células-Tronco/genética , Transcrição Gênica
13.
Brain Struct Funct ; 221(9): 4411-4427, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26701169

RESUMO

Adult neurogenesis in the mammalian brain is restricted to specific regions, such as the dentate gyrus (DG) in the hippocampus and the subventricular zone (SVZ) in the walls of the lateral ventricles. Here, we used a mouse line carrying a knock-in of Cre recombinase in the Prss56 gene, in combination with two Cre-inducible fluorescent reporters (Rosa26 mTmG and Rosa26 tdTom ), to perform genetic tracing of Prss56-expressing cells in the adult brain. We found reporter-positive cells in three neurogenic niches: the DG, the SVZ and the hypothalamus ventricular zone. In the prospective DG, Prss56 is expressed during embryogenesis in a subpopulation of radial glia. The pattern of migration and differentiation of reporter-positive cells during development recapitulates the successive steps of DG neurogenesis, including the formation of a subpopulation of adult neural stem cells (NSC). In the SVZ, Prss56 is expressed postnatally in a subpopulation of adult NSC mainly localized in the medial-ventral region of the lateral wall. This subpopulation preferentially gives rise to deep granule and Calbindin-positive periglomerular interneurons in the olfactory bulb. Finally, Prss56 is also expressed in a subpopulation of α2-tanycytes, which are potential adult NSCs of the hypothalamus ventricular zone. Our observations suggest that some α2-tanycytes translocate their soma into the parenchyma and may give rise to a novel cell type in this territory. Overall, this study establishes the Prss56 Cre line as an efficient and promising new tool to study multiple aspects of adult neurogenesis in the mouse.


Assuntos
Células-Tronco Adultas/fisiologia , Encéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese , Serina Proteases/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular , Movimento Celular , Giro Denteado/embriologia , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Ventrículos Laterais/embriologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Serina Proteases/fisiologia
14.
Stem Cell Reports ; 5(2): 278-90, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26212662

RESUMO

While neurogenic stem cells have been identified in rodent and human skin, their manipulation and further characterization are hampered by a lack of specific markers. Here, we perform genetic tracing of the progeny of boundary cap (BC) cells, a neural-crest-derived cell population localized at peripheral nerve entry/exit points. We show that BC derivatives migrate along peripheral nerves to reach the skin, where they give rise to terminal glia associated with dermal nerve endings. Dermal BC derivatives also include cells that self-renew in sphere culture and have broad in vitro differentiation potential. Upon transplantation into adult mouse dorsal root ganglia, skin BC derivatives efficiently differentiate into various types of mature sensory neurons. Together, this work establishes the embryonic origin, pathway of migration, and in vivo neurogenic potential of a major component of skin stem-like cells. It provides genetic tools to study and manipulate this population of high interest for medical applications.


Assuntos
Células-Tronco Neurais/citologia , Neurogênese , Neuroglia/citologia , Pele/citologia , Animais , Linhagem da Célula , Movimento Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Células Receptoras Sensoriais/citologia
15.
Dev Cell ; 33(3): 343-50, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25942625

RESUMO

Dorsal root ganglia (DRG) sensory neurons arise from heterogeneous precursors that differentiate in two neurogenic waves, respectively controlled by Neurog2 and Neurog1. We show here that transgenic mice expressing a Zeb1/2 dominant-negative form (DBZEB) exhibit reduced numbers of nociceptors and altered pain sensitivity. This reflects an early impairment of Neurog1-dependent neurogenesis due to the depletion of specific sensory precursor pools, which is slightly later partially compensated by the contribution of boundary cap cells (BCCs). Indeed, combined DBZEB expression and genetic BCCs ablation entirely deplete second wave precursors and, in turn, nociceptors, thus recapitulating the Neurog1(-/-) neuronal phenotype. Altogether, our results uncover roles for Zeb family members in the developing DRGs; they show that the Neurog1-dependent sensory neurogenesis can be functionally partitioned in two successive phases; and finally, they illustrate plasticity in the developing peripheral somatosensory system supported by the BCCs, thereby providing a rationale for sensory precursor diversity.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Plasticidade Neuronal/fisiologia , Nociceptores/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Gânglios Espinais/embriologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Plasticidade Neuronal/genética , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
16.
Cardiovasc Res ; 104(3): 443-55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344368

RESUMO

AIMS: Heart valve maturation is achieved by the organization of extracellular matrix (ECM) and the distribution of valvular interstitial cells. However, the factors that regulate matrix components required for valvular structure and function are unknown. Based on the discovery of its specific expression in cardiac valves, we aimed to uncover the role of Krox20 (Egr-2) during valve development and disease. METHODS AND RESULTS: Using series of mouse genetic tools, we demonstrated that loss of function of Krox20 caused significant hyperplasia of the semilunar valves, while atrioventricular valves appeared normal. This defect was associated with an increase in valvular interstitial cell number and ECM volume. Echo Doppler analysis revealed that adult mutant mice had aortic insufficiency. Defective aortic valves (AoVs) in Krox20(-/-) mice had features of human AoV disease, including excess of proteoglycan deposition and reduction of collagen fibres. Furthermore, examination of diseased human AoVs revealed decreased expression of KROX20. To identify downstream targets of Krox20, we examined expression of fibrillar collagens in the AoV leaflets at different stages in the mouse. We found significant down-regulation of Col1a1, Col1a2, and Col3a1 in the semilunar valves of Krox20 mutant mice. Utilizing in vitro and in vivo experiments, we demonstrated that Col1a1 and Col3a1 are direct targets of Krox20 activation in interstitial cells of the AoV. CONCLUSION: This study identifies a previously unknown function of Krox20 during heart valve development. These results indicate that Krox20-mediated activation of fibrillar Col1a1 and Col3a1 genes is crucial to avoid postnatal degeneration of the AoV leaflets.


Assuntos
Valva Aórtica/embriologia , Colágeno Tipo I/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Insuficiência da Valva Aórtica/genética , Insuficiência da Valva Aórtica/metabolismo , Insuficiência da Valva Aórtica/patologia , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Desenvolvimento Embrionário , Feminino , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Homeostase , Humanos , Masculino , Mesoderma/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ativação Transcricional
17.
PLoS One ; 9(1): e81868, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465372

RESUMO

Gene transcription is essential for learning, but the precise role of transcription factors that control expression of many other genes in specific learning paradigms is yet poorly understood. Zif268 (Krox24/Egr-1) is a transcription factor and an immediate-early gene associated with memory consolidation and reconsolidation, and induced in the striatum after addictive drugs exposure. In contrast, very little is known about its physiological role at early stages of operant learning. We investigated the role of Zif268 in operant conditioning for food. Zif268 expression was increased in all regions of the dorsal striatum and nucleus accumbens in mice subjected to the first session of operant conditioning. In contrast, Zif268 increase in the dorsomedial caudate-putamen and nucleus accumbens core was not detected in yoked mice passively receiving the food reward. This indicates that Zif268 induction in these structures is linked to experiencing or learning contingency, but not to reward delivery. When the task was learned (5 sessions), Zif268 induction disappeared in the nucleus accumbens and decreased in the medial caudate-putamen, whereas it remained high in the lateral caudate-putamen, previously implicated in habit formation. In transgenic mice expressing green fluorescent protein (GFP) in the striatonigral neurons, Zif268 induction occured after the first training session in both GFP-positive and negative neurons indicating an enhanced Zif268 expression in both striatonigral and striatopallidal neurons. Mutant mice lacking Zif268 expression obtained less rewards, but displayed a normal discrimination between reinforced and non-reinforced targets, and an unaltered approach to food delivery box. In addition, their motivation to obtain food rewards, evaluated in a progressive ratio schedule, was blunted. In conclusion, Zif268 participates in the processes underlying performance and motivation to execute food-conditioned instrumental task.


Assuntos
Condicionamento Operante , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Plasticidade Neuronal , Adaptação Fisiológica , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Comportamento Alimentar/psicologia , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Motivação , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Especificidade de Órgãos , Ativação Transcricional
18.
J Neuropathol Exp Neurol ; 71(11): 938-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23095846

RESUMO

Endoneurial fibroblast-like cells (EFLCs) have been described for more than 60 years, but the embryology, functions, and pathology of these cells are not well defined. Several hypotheses of their origin have been proposed. A previous study suggesting that they were of neural crest origin is supported by our data in humans. This lineage might account for EFLCs having multiple biologic functions and involvement in pathological processes. Here, we review what is known about the origin; functions in collagen synthesis, phagocytosis, inflammatory responses, and immune surveillance; and the pathological alterations of EFLCs based on the literature and on our personal observations.


Assuntos
Fibroblastos/citologia , Crista Neural/citologia , Nervos Periféricos/citologia , Fagócitos/citologia , Animais , Linhagem da Célula/fisiologia , Fibroblastos/classificação , Fibroblastos/fisiologia , Humanos , Fagócitos/classificação , Fagócitos/fisiologia
19.
Ann Neurol ; 71(5): 719-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22522483

RESUMO

The transcription factor EGR2 is expressed in Schwann cells, where it controls peripheral nerve myelination. Mutations of EGR2 have been found in patients with congenital hypomyelinating neuropathy or Charcot-Marie-Tooth disease type 1D. In a patient with congenital amyelinating neuropathy, we observed pathological abnormalities recapitulating the peripheral nervous system phenotype of homozygous Egr2-null mice. This patient, born from consanguineous parents, showed no EGR2 immunoreactivity in Schwann cells and harbored a homozygous 10.7-kilobase-long deletion encompassing a myelin-specific enhancer of EGR2. This regulatory mutation is the first genetic abnormality associated with congenital amyelinating neuropathy in humans.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteína 2 de Resposta de Crescimento Precoce/genética , Elementos Facilitadores Genéticos/genética , Bainha de Mielina/patologia , Sequência de Bases , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase , Deleção de Sequência
20.
J Biomed Opt ; 16(11): 116012, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22112117

RESUMO

Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-µm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.


Assuntos
Imagem Molecular/métodos , Bainha de Mielina/química , Tomografia de Coerência Óptica/métodos , Animais , Córtex Cerebral/química , Córtex Cerebral/ultraestrutura , Proteína 2 de Resposta de Crescimento Precoce/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Microscopia , Bainha de Mielina/ultraestrutura , Ratos , Ratos Wistar , Nervo Isquiático/química , Nervo Isquiático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA