Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(10): e3002850, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39446878

RESUMO

Individual animals differ in their traits and preferences, which shape their social interactions, survival, and susceptibility to disease, including addiction. Nicotine use is highly heterogenous and has been linked to the expression of personality traits. Although these relationships are well documented, we have limited understanding of the neurophysiological mechanisms that give rise to distinct behavioral profiles and their connection to nicotine susceptibility. To address this question, we conducted a study using a semi-natural and social environment called "Souris-City" to observe the long-term behavior of individual male mice. Souris-City provided both a communal living area and a separate test area where mice engaged in a reward-seeking task isolated from their peers. Mice developed individualistic reward-seeking strategies when choosing between water and sucrose in the test compartment, which, in turn, predicted how they adapted to the introduction of nicotine as a reinforcer. Moreover, the profiles mice developed while isolated in the test area correlated with their behavior within the social environment, linking decision-making strategies to the expression of behavioral traits. Neurophysiological markers of adaptability within the dopamine system were apparent upon nicotine challenge and were associated with specific profiles. Our findings suggest that environmental adaptations influence behavioral traits and sensitivity to nicotine by acting on dopaminergic reactivity in the face of nicotine exposure, potentially contributing to addiction susceptibility. These results further emphasize the importance of understanding interindividual variability in behavior to gain insight into the mechanisms of decision-making and addiction.


Assuntos
Comportamento Animal , Nicotina , Recompensa , Animais , Masculino , Nicotina/farmacologia , Camundongos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Meio Social , Dopamina/metabolismo , Comportamento Social
2.
Nat Commun ; 15(1): 9017, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39424848

RESUMO

How nicotine acts on developing neurocircuitry in adolescence to promote later addiction vulnerability remains largely unknown, but may hold the key for informing more effective intervention efforts. We found transient nicotine exposure in early adolescent (PND 21-28) male mice was sufficient to produce a marked vulnerability to nicotine in adulthood (PND 60 + ), associated with disrupted functional connectivity in dopaminergic circuits. These mice showed persistent adolescent-like behavioral and physiological responses to nicotine, suggesting that nicotine exposure in adolescence prolongs an immature, imbalanced state in the function of these circuits. Chemogenetically resetting the balance between the underlying dopamine circuits unmasked the mature behavioral response to acute nicotine in adolescent-exposed mice. Together, our results suggest that the perseverance of a developmental imbalance between dopamine pathways may alter vulnerability profiles for later dopamine-dependent psychopathologies.


Assuntos
Dopamina , Nicotina , Animais , Masculino , Nicotina/farmacologia , Dopamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Comportamento Animal/efeitos dos fármacos
3.
Sci Adv ; 10(9): eadg2636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427737

RESUMO

Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.


Assuntos
Estudo de Associação Genômica Ampla , Receptores de AMPA , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética
4.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095361

RESUMO

In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here, we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them, and differentiate into pericytes and vascular smooth muscle cells. Genetic ablation of this population affects the organization of the skin vascular network. Our results reveal the heterogeneity and extended potential of the BC population in mice, which gives rise to mural cells, in addition to previously described neurons, Schwann cells, and melanocytes. Finally, our results suggest that mural specification of BC derivatives takes place before their migration along nerves to the mouse skin.


Assuntos
Crista Neural , Tubo Neural , Camundongos , Animais , Crista Neural/fisiologia , Neuroglia , Células de Schwann , Pele , Diferenciação Celular/fisiologia
5.
Neurobiol Dis ; 188: 106345, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926170

RESUMO

The neocortex is highly susceptible to metabolic dysfunction. When exposed to global ischemia or anoxia, it suffers a slowly propagating wave of collective neuronal depolarization that ultimately impairs its structure and function. While the molecular signature of anoxic depolarization (AD) is well documented, little is known about the brain states that precede and follow AD onset. Here, by means of multisite extracellular local field potentials and intracellular recordings from identified pyramidal cells, we investigated the laminar expression of cortical activities induced by transient anoxia in rat primary somatosensory cortex. Soon after the interruption of brain oxygenation, we observed a well-organized sequence of stereotyped activity patterns across all cortical layers. This sequence included an initial period of beta-gamma activity, rapidly replaced by delta-theta oscillations followed by a decline in all spontaneous activites, marking the entry into a sustained period of electrical silence. Intracellular recordings revealed that cortical pyramidal neurons were depolarized and highly active during high-frequency activity, became inactive and devoid of synaptic potentials during the isoelectric state, and showed subthreshold composite synaptic depolarizations during the low-frequency period. Contrasting with the strong temporal coherence of pre-AD activities along the vertical axis of the cortical column, the onset of AD was not uniform across layers. AD initially occurred in layer 5 or 6 and then propagated bidirectionally in the upward and downward direction. Conversely, the post-anoxic waves that indicated the repolarization of cortical neurons upon brain reoxygenation did not exhibit a specific spatio-temporal profile. Pyramidal neurons from AD initiation site had a more depolarized resting potential and higher spontaneous firing rate compared to superficial cortical cells. We also found that the propagation pattern of AD was reliably reproduced by focal injection of an inhibitor of sodium­potassium ATPases, suggesting that cortical AD dynamics could reflect layer-dependent variations in cellular metabolic regulations.


Assuntos
Neocórtex , Animais , Ratos , Neurônios , Células Piramidais , Ciclo Celular , Hipóxia
7.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36411386

RESUMO

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Assuntos
Tronco Encefálico , Leptina , Neurônios , Redução de Peso , Animais , Humanos , Masculino , Camundongos , Tronco Encefálico/metabolismo , Leptina/metabolismo , Camundongos Obesos , Neurônios/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Orexina/metabolismo
8.
Neuron ; 110(8): 1385-1399.e8, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35123655

RESUMO

Optimizing reproductive fitness in mammalians requires behavioral adaptations during pregnancy. Maternal preparatory nesting is an essential behavior for the survival of the upcoming litter. Brain-wide immediate early gene mapping in mice evoked by nesting sequences revealed that phases of nest construction strongly activate peptidergic neurons of the Edinger-Westphal nucleus in pregnant mice. Genetic ablation, bidirectional neuromodulation, and in vitro and in vivo activity recordings demonstrated that these neurons are essential to modulate arousal before sleep to promote nesting specifically. We show that these neurons enable the behavioral effects of progesterone on preparatory nesting by modulating a broad network of downstream targets. Our study deciphers the role of midbrain CART+ neurons in behavioral adaptations during pregnancy vital for reproductive fitness.


Assuntos
Mesencéfalo , Neurônios , Animais , Mamíferos , Camundongos , Neurônios/fisiologia
9.
Cell ; 180(4): 780-795.e25, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059781

RESUMO

The cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized multichannel images from light sheet microscopy, enabling the construction, analysis, and visualization of vascular graphs composed of over 100 million vessel segments. We generated datasets from over 20 mouse brains, with labeled arteries, veins, and capillaries according to their anatomical regions. We characterized the organization of the vascular network across brain regions, highlighting local adaptations and functional correlates. We propose a classification of cortical regions based on the vascular topology. Finally, we analysed brain-wide rearrangements of the vasculature in animal models of congenital deafness and ischemic stroke, revealing that vascular plasticity and remodeling adopt diverging rules in different models.


Assuntos
Adaptação Fisiológica , Encéfalo/irrigação sanguínea , Capilares/anatomia & histologia , Artérias Cerebrais/anatomia & histologia , Veias Cerebrais/anatomia & histologia , Remodelação Vascular , Animais , Capilares/patologia , Artérias Cerebrais/patologia , Veias Cerebrais/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Privação Sensorial , Estresse Psicológico/etiologia , Estresse Psicológico/patologia , Acidente Vascular Cerebral/patologia
10.
Nat Methods ; 16(11): 1105-1108, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31527839

RESUMO

Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).


Assuntos
Microscopia de Fluorescência/instrumentação , Animais , Embrião de Galinha , Microscopia de Fluorescência/métodos , Software
11.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31257028

RESUMO

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Assuntos
Metabolismo Energético , Neurônios GABAérgicos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Mapeamento Encefálico , Clozapina/análogos & derivados , Clozapina/farmacologia , Núcleo Dorsal da Rafe/metabolismo , Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Temperatura , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA