Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(24): 16489-16501, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34843233

RESUMO

Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models. To assess interspecies differences, we tested known human PPARγ ligands on reporter cell lines expressing either human, mouse, zebrafish, or xenopus PPARγ. Using these cell lines, we were able to highlight major interspecies differences. Known hPPARγ pharmaceutical ligands modulated hPPARγ and mPPARγ activities in a similar manner, while xPPARγ was less responsive and zfPPARγ was not modulated at all by these compounds. On the contrary, human liver X receptor (hLXR) ligands GW 3965 and WAY-252623 were only active on zfPPARγ. Among environmental compounds, several molecules activated the PPARγ of the four species similarly, e.g., phthalates (MEHP), perfluorinated compounds (PFOA, PFOS), and halogenated derivatives of BPA (TBBPA, TCBPA), but some of them like diclofenac and the organophosphorus compounds tri-o-tolyl phosphate and triphenyl phosphate were most active on zfPPARγ. This study confirms or shows for the first time the h, m, x, and zfPPARγ activities of several chemicals and demonstrates the importance of the use of species-specific models to study endocrine and metabolism disruption by environmental chemicals.


Assuntos
Disruptores Endócrinos , Preparações Farmacêuticas , Animais , Ligantes , Camundongos , PPAR gama , Peixe-Zebra
2.
Front Pharmacol ; 11: 1122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792956

RESUMO

To characterize human nuclear receptor (NR) specificity of synthetic pharmaceutical chemicals we established stable cell lines expressing the ligand binding domains (LBDs) of human FXR, LXRα, LXRß, CAR, and RORγ fused to the yeast GAL4 DNA binding domain (DBD). As we have already done for human PXR, a two-step transfection procedure was used. HeLa cells stably expressing a Gal4 responsive gene (HG5LN cell line) were transfected by Gal4-NRs expressing plasmids. At first, using these cell lines as well as the HG5LN PXR cells, we demonstrated that the basal activities varied from weak (FXR and LXRs), intermediate (PXR), to strong (CAR and RORγ), reflecting the recruitment of HeLa co-regulators in absence of ligand. Secondly, we finely characterized the activities of commercially available FXR, LXRα, LXRß, CAR, RORγ, and PXR agonists/antagonists GW4064, feraxamine, DY268, T0901317, GW3965, WAY252623, SR9238, SR9243, GSK2033, CITCO, CINPA1, PK11195, S07662, SR1078, SR0987, SR1001, SR2211, XY018, clotrimazole, dabrafenib, SR12813, and SPA70, respectively. Among these compounds we revealed both, receptor specific agonists/antagonists, as well as less selective ligands, activating or inhibiting several nuclear receptors. FXR ligands manifested high receptor selectivity. Vice versa, LXR ligands behaved in non-selective manner, all activating at least PXR. CAR was selectively influenced by their ligands, while it also responded to several LXR ligands. Finally, although PXR was quite selectively activated or antagonized by its own ligands, it responded to several NRs ligands as well. Thus, using these reporter cell lines enabled us to precisely characterize the selectivity of pharmaceutical ligands for different nuclear receptors.

3.
Cells ; 9(7)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650447

RESUMO

The human pregnane X receptor (hPXR) is activated by a large set of endogenous and exogenous compounds and plays a critical role in the control of detoxifying enzymes and transporters regulating liver and gastrointestinal drug metabolism and clearance. hPXR is also involved in both the development of multidrug resistance and enhanced cancer cells aggressiveness. Moreover, its unintentional activation by pharmaceutical drugs can mediate drug-drug interactions and cause severe adverse events. In that context, the potential of the anticancer BRAF inhibitor dabrafenib suspected to activate hPXR and the human constitutive androstane receptor (hCAR) has not been thoroughly investigated yet. Using different reporter cellular assays, we demonstrate that dabrafenib can activate hPXR as efficiently as its reference agonist SR12813, whereas it does not activate mouse or zebrafish PXR nor hCAR. We also showed that dabrafenib binds to recombinant hPXR, induces the expression of hPXR responsive genes in colon LS174T-hPXR cancer cells and human hepatocytes and finally increases the proliferation in LS174T-hPXR cells. Our study reveals that by using a panel of different cellular techniques it is possible to improve the assessment of hPXR agonist activity for new developed drugs.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Oximas/farmacologia , Receptor de Pregnano X/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Ligação Proteica/efeitos dos fármacos
4.
EMBO Mol Med ; 12(4): e11621, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32153125

RESUMO

The human PXR (pregnane X receptor), a master regulator of drug metabolism, has essential roles in intestinal homeostasis and abrogating inflammation. Existing PXR ligands have substantial off-target toxicity. Based on prior work that established microbial (indole) metabolites as PXR ligands, we proposed microbial metabolite mimicry as a novel strategy for drug discovery that allows exploiting previously unexplored parts of chemical space. Here, we report functionalized indole derivatives as first-in-class non-cytotoxic PXR agonists as a proof of concept for microbial metabolite mimicry. The lead compound, FKK6 (Felix Kopp Kortagere 6), binds directly to PXR protein in solution, induces PXR-specific target gene expression in cells, human organoids, and mice. FKK6 significantly represses pro-inflammatory cytokine production cells and abrogates inflammation in mice expressing the human PXR gene. The development of FKK6 demonstrates for the first time that microbial metabolite mimicry is a viable strategy for drug discovery and opens the door to underexploited regions of chemical space.


Assuntos
Mimetismo Molecular , Receptor de Pregnano X/química , Animais , Células Cultivadas , Citocinas , Humanos , Inflamação , Intestinos , Ligantes , Camundongos , Organoides
5.
Mol Cell Endocrinol ; 502: 110665, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31760044

RESUMO

Endocrine disrupting chemicals (EDCs) are exogenous substances that are suspected to cause adverse effects in the endocrine system mainly by acting through their interaction with nuclear receptors such as the estrogen receptors α and ß (ERα and ERß), the androgen receptor (AR), the pregnan X receptor (PXR), the peroxisome proliferator activated receptors α and γ (PPARα, PPARγ) and the thyroid receptors α and ß (TRα and TRß). More recently, the retinoid X receptors (RXRα, RXRß and RXRγ), the constitutive androstane receptor (CAR) and the estrogen related receptor γ (ERRγ) have also been identified as targets of EDCs. Finally, nuclear receptors still poorly studied for their interaction with environmental ligands such as the progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the retinoic acid receptors (RAR α, RARß and RARγ), the farnesoid X receptor (FXR) and the liver X receptors α and ß (LXRα and LXß) as well are suspected targets of EDCs. Humans are generally exposed to low doses of pollutants, therefore the aim of current research is to identify the targets of EDCs at environmental concentrations. In this review, we analyze recent works referring that nuclear receptors are targets of EDCs and we highlight which EDCs are able to act at low concentrations.


Assuntos
Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes
6.
Oncol Lett ; 18(4): 4270-4277, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31579073

RESUMO

Potential causal associations of autoimmune thyroiditis (AIT) and papillary thyroid carcinoma (PTC) have been studied previously. The mRNA expression patterns of thyroid hormone receptors (TR), retinoid receptors (RAR), rexinoid receptors (RXR), dihydroxyvitamin D3 receptors (VDR), and progesterone receptors (PR) in PTC tissue of patients without autoimmune thyroiditis (PTC/AIT-) and in PTC tissue of patients with coexisting AIT (PTC/AIT+) have been investigated in order to judge whether the observed changes may take part in the promotion and progression of thyroid cancer. Tumours with or without AIT were classified histologically and the semiquantitative PCR was performed. The results revealed that there was decreased expression of TRα, TRßα, RARα and PR mRNA in PTC/AIT+ tumours when compared with PTC/AIT- tumours. Decreased expression of RARα in PTC/AIT+ was detected when compared with PTC/AIT- patients. A similar effect of AIT was observed with a decrease in RARγ expression in PTC/AIT+ patients. On the other hand, there was an increased expression of VDR in thyroid tumours (PTC/AIT+) when compared with PTC/AIT-. PR mRNA was decreased in the thyroid tumours of PTC/AIT+ patients when compared with PTC/AIT- patients. In addition, there was an increased expression of MKi67 and complement C3 in PTC of PTC/AIT+ when compared with PTC/AIT-. In the PTC/AIT+ group, a decreased level of IGF-1 mRNA was found when compared with the PTC/AIT- group. According to the significant differences of the studied markers in PTC/AIT+ compared with PTC/AIT-, it was indicated that AIT may be a predisposing factor for the development of PTC.

7.
Toxicology ; 420: 39-45, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30951782

RESUMO

Bisphenol-A (BPA) is one of the most abundant chemicals produced worldwide. Exposure to BPA has been associated with various physiological dysregulations, involving reproduction, development, metabolism, as well as genesis and progression of hormone-dependent cancers. It has been well published that BPA along with its analogs bind and activate estrogen receptors (ER) α and ß, estrogen related receptor (ERR) γ and pregnan X receptor (PXR). BPA has been also characterized as an inhibitor of the androgen (AR) and progesterone (PR) receptor. Thus, the need for safer alternatives to BPA among bisphenols is rising. In this regard, we used reporter cell lines to analyze the effects of 24 bisphenols on the selected nuclear receptors (NRs), known and potential targets of BPA. We showed that bisphenols differently modulated the activities of NRs. ERs, ERRγ and PXR were generally activated by bisphenols, whereas many compounds of this family acted as AR, PR, GR and MR antagonists. On the other hand, some bisphenols such as BPA, BPC and BPE modulated the activity of several NRs, but others lacked the activity of other NRs. Altogether, these data provide the guidelines for development of safer BPA substitutes with reduced hormonal activity.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Genes Reporter , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Transfecção
8.
Gen Physiol Biophys ; 38(2): 135-144, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30806631

RESUMO

Trialkyltins and triaryltins function as nuclear retinoid X receptors (RXR) agonists due to their affinity to the ligand-binding domain of RXR subtypes and function as transcriptional activators. We present the data on combined effects of all-trans retinoic acid (ATRA), retinoic acid receptor (RAR) ligand and tributyltin chloride or triphenyltin chloride (RXR ligands) on protein pattern in MDA-MB-231 cells. Proteomic strategies based on bottom-up method were applied in this study. The total cell proteins were extracted, separated on 2D SDS-PAGE and their characterization was achieved by MALDI-TOF/TOF MS/MS. By employing PDQuest™ software, we identified more than 30 proteins differently affected by the above compounds. For further studies, we selected specific proteins associated either with metabolic pathway (glyceraldehyde-3-phosphate dehydrogenase) or to cellular processes as apoptosis, regulation of gene transcription or epithelial-mesenchymal transition (annexin 5, nucleoside diphosphate kinase B and vimentin). We have found that treatment of MDA-MB-231 cells with triorganotins reduced the expression of studied proteins. Moreover, the treatment of MDA-MB-231 cells with triorganotin compounds together with ATRA resulted in an additional reduction of annexin 5, vimentin and nucleoside diphosphate kinase B. These results demonstrate that RXR/RAR heterodimer may act under this experimental design as permissive heterodimer allowing activation of RXR by triorganotins.


Assuntos
Neoplasias da Mama , Compostos Orgânicos de Estanho , Proteômica , Tretinoína , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Células MCF-7 , Compostos Orgânicos de Estanho/farmacologia , Espectrometria de Massas em Tandem , Tretinoína/farmacologia
9.
Gen Physiol Biophys ; 37(5): 589-596, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30307405

RESUMO

Both, the vitamin D3 receptor (VDR) and the peroxisome proliferator-activated receptor gamma (PPARγ), are ligand-inducible transcription factors that control expressions of various genes involved in essential biological processes. Structurally diverse chemical substances are capable to bind to VDR and PPARγ, consequently acting in agonistic or antagonistic mode. Ubiquitous triorganotin compounds, key components of antifouling, disinfectant and biocidal agents were found to act as cognate ligands of several nuclear receptors. Triorganotins affect endocrine systems in disruptive manner recruiting proliferative, differentiation and apoptotic pathways. In this study, we have investigated agonistic as well as antagonistic effects of selected triorganotin compounds on VDR and PPARγ in transgenic gene reporter IZ-VDRE and PAZ-PPARγ human cell lines, allowing rapid and sensitive assessment of receptor transcriptional activity. We demonstrated that most of investigated triorganotins at nanomolar concentration exerted significant agonistic effects on VDR with fold activation ranging from 2.0 to 3.0-fold as well as some significant changes ranging from 127 to 199% of the maximal 1,25-dihydroxyvitamin D3 (calcitriol) induction, in antagonistic mode. In agonistic mode, PPARγ transcriptional activity was not affected by studied triorganotins significantly, but studied tributyltin compounds in antagonistic mode, revealed significant values ranging from 147 to 171% of the maximal 15-deoxy-δ12,14-prostaglandin J2 induction.


Assuntos
Compostos Orgânicos de Estanho/farmacologia , PPAR gama/genética , Receptores de Calcitriol/genética , Transcrição Gênica/efeitos dos fármacos , Humanos
10.
Gen Physiol Biophys ; 36(4): 481-484, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836501

RESUMO

In the present study, we analyzed in vitro effects of natural and synthetic triorganotin ligands of nuclear retinoid X receptors in human MCF-7 breast cancer cells. Our data has shown that all-trans retinoic acid significantly reduced expression of RXRalpha mRNA, Bcl2 and enhanced expression of BAX proteins. Tributyltin bromide markedly decreased mRNA level of RXRalpha and RXRbeta. Significantly reduced levels of both RXRs proteins were observed after treatment with tributyltin chloride (TBT-Cl) but not after treatment with triphenyltin chloride (TPT-Cl) for RXRbeta protein. Both RXRalpha and RXRbeta protein levels decrease was found also by combination ATRA+TBT-Cl/TPT-Cl.


Assuntos
Núcleo Celular/metabolismo , Compostos Orgânicos de Estanho/administração & dosagem , Receptores X de Retinoides/metabolismo , Tretinoína/administração & dosagem , Núcleo Celular/efeitos dos fármacos , Humanos , Células MCF-7
11.
Gen Physiol Biophys ; 35(3): 387-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27174898

RESUMO

In the present study, we analyzed the cell lysates of human tumour cell lines representing two major clinically different types of breast cancer. Our main goal was to show the differences between them on proteomic level. Gel electrophoresis followed by MALDI-TOF MS analysis was used for proteins determination. Exactly 98 proteins were unequivocally identified and 60 of them were expressed differentially between MDA-MB-231 and MCF-7 cell lines. Among the proteins reported here, some well-known breast cancer markers (e.g., annexin A1, annexin A2 and vimentin) were identified in the MDA-MB-231 cell line and thus we were able to distinguish both cell lines sufficiently.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Humanos , Células MCF-7
12.
Toxicol Lett ; 254: 32-6, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153798

RESUMO

Nuclear 9-cis retinoic acid receptors (retinoid X receptors, RXR) are promiscuous dimerization partners for a number of nuclear receptors. In the present study, we established a novel in vitro method for quantitative determination of the nuclear retinoid X receptors in rat liver. One type of high affinity and limited capacity RXR specific binding sites with the Ka value ranging from 1.011 to 1.727×10(9)l/mol and the Bmax value ranging from 0.346 to 0.567pmol/mg, was demonstrated. Maximal 9-cis retinoic acid (9cRA) specific binding to nuclear retinoid X receptors was achieved at 20°C, and the optimal incubation time for the 9cRA-RXR complex formation was 120min. From a number of endocrine disruptors, tributyltins and triphenyltins are known as RXR ligands. Our data confirmed the property of tributyltin chloride or triphenyltin chloride to bind to a high affinity and limited capacity RXR binding sites. Described optimal conditions for ligand binding to RXR molecules enabled us to calculate maximal binding capacity (Bmax) and affinity (Ka) values. This study provides an original RXR radioligand binding assay that can be employed for investigation of novel RXR ligands that comprise both drugs and endocrine disruptors.


Assuntos
Fígado/metabolismo , Compostos Orgânicos de Estanho/metabolismo , Ensaio Radioligante , Receptores X de Retinoides/metabolismo , Tretinoína/metabolismo , Compostos de Trialquitina/metabolismo , Alitretinoína , Animais , Sítios de Ligação , Ligação Competitiva , Relação Dose-Resposta a Droga , Ligantes , Fígado/efeitos dos fármacos , Compostos Orgânicos de Estanho/toxicidade , Ligação Proteica , Ratos , Receptores X de Retinoides/efeitos dos fármacos , Medição de Risco , Compostos de Trialquitina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA