Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 695958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903238

RESUMO

Recent divergence can obscure species boundaries among closely related taxa. Silene section Italicae (Caryophyllaceae) has been taxonomically controversial, with about 30 species described. We investigate species delimitation within this section using 500 specimens sequenced for one nuclear and two plastid markers. Despite the use of a small number of genes, the large number of sequenced samples allowed confident delimitation of 50% of the species. The delimitation of other species (e.g., Silene nemoralis, S. nodulosa and S. andryalifolia) was more challenging. We confirmed that seven of the ten chasmophyte species in the section are not related to each other but are, instead, genetically closer to geographically nearby species belonging to Italicae yet growing in open habitats. Adaptation to chasmophytic habitats therefore appears to have occurred independently, as a result of convergent evolution within the group. Species from the Western Mediterranean Basin showed more conflicting species boundaries than species from the Eastern Mediterranean Basin, where there are fewer but better-delimited species. Significant positive correlations were found between an estimation of the effective population size of the taxa and their extent of occurrence (EOO) or area of occupancy (AOO), and negative but non-significant correlations between the former and the posterior probability (PP) of the corresponding clades. These correlations might suggest a lower impact of incomplete lineage sorting in species with low effective population sizes and small distributional ranges compared with that in species inhabiting large areas. Finally, we confirmed that S. italica and S. nemoralis are distinct species, that S. nemoralis might furthermore include two different species and that S. velutina from Corsica and S. hicesiae from the Lipari Islands are sister species.

2.
Mol Phylogenet Evol ; 131: 125-137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385309

RESUMO

Biological processes such as hybridization, incomplete lineage sorting and gene flow can obscure the recognition of distinct evolutionary lineages, particularly in groups of organisms that have recently diverged. Therefore, compiling pieces of evidence from diverse data sources is critical to accurately assess species boundaries in such groups. The increasing availability of DNA sequence data allows for a much deeper understanding of diversification and speciation processes and their consequences on biodiversity. In this study, we applied an integrative approach based on DNA sequence, chemical, geographic and morphological data to attempt to define species boundaries in the lichen-forming genus Usnea (Parmeliaceae), particularly the U. cornuta aggregate, a cosmopolitan species group. We provide the first species delimitation for this group in the neotropics based on the multispecies coalescent (MSC) model. Using ITS rDNA and two protein-coding genes, Mcm7 and RPB1, we estimated the species tree under the MSC model in a Bayesian framework using STACEY. Our results indicate that at least nine strongly supported distinct lineages coexist in the U. cornuta aggregate, which are well chemically characterized. Additionally, we found evidence for the polyphyly of three morphospecies, Usnea brasiliensis, U. cornuta and U. dasaea.


Assuntos
Variação Genética , Usnea/química , Usnea/genética , Sequência de Bases , Teorema de Bayes , DNA Fúngico/genética , Geografia , Filogenia , Probabilidade , Especificidade da Espécie , Usnea/classificação
3.
Mol Phylogenet Evol ; 102: 1-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27233442

RESUMO

Species delimitation is a major focus of biosystematics. In recent years, considerable progress has been achieved with the development of the multispecies coalescent (MSC) model, where species constitute the branches of the species tree or network. However, researchers are faced with the limitation that the MSC method of choice often requires a priori assignment of individuals to species. This not only introduces subjectivitiy into the analyses, but may also lead to meaningless species tree hypotheses, if the allele-to-species assignments are inaccurate. DISSECT is a recently introduced method that does not require a priori allele-to-species assignments, but instead examines the posterior probabilities of groupings (clusterings) of individuals under study. Using the DISSECT approach, we analysed genetic data from 75 individual plants belonging to the Silene aegyptiaca species complex that has previously been divided into 3-5 species. Marginal likelihood estimates from (*)BEAST analyses, run with predefined species classifications, strongly favour those compatible with the DISSECT result over those from morphology- and geography-based taxonomy. We found at least nine species, including several cryptic ones, for which no clear geographical or morphological patterns are correlated. However, the limited data and the possibility of unmodelled processes mean there is still much uncertainty about the true number of MSC species, and for taxonomic purposes, other criteria might be relevant. Nevertheless, we argue that the approach signifies an important step towards objective and testable species delimitations in any organismal group. In particular, it makes it possible to avoid biologically irrelevant species classifications.


Assuntos
Filogenia , Silene/classificação , Software , Teorema de Bayes , Geografia , Funções Verossimilhança , Probabilidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA