Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 320(2): H593-H603, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275521

RESUMO

Our prior work has shown that Na+ current (INa) affects sarcoplasmic reticular (SR) Ca2+ release by activating early reverse of the Na+-Ca2+ exchanger (NCX). The resulting Ca2+ entry primes the dyadic cleft, which appears to increase Ca2+ channel coupling fidelity. It has been shown that the skeletal isoform of the voltage-gated Na+ channel (Nav1.4) is the main tetrodotoxin (TTX)-sensitive Nav isoform expressed in adult rabbit ventricular cardiomyocytes. Here, I tested the hypothesis that it is also the principal isoform involved in the priming mechanism. Action potentials (APs) were evoked in isolated rabbit ventricular cells loaded with fluo-4, and simultaneously recorded Ca2+ transients before and after the application of either relatively low doses of TTX (100 nM), the specific Nav1.4 inhibitor µ-Conotoxin GIIIB or the specific Nav1.1 inhibitor ICA 121430. Although APs changes after the application of each drug reflected the relative abundance of each isoform, the effects of TTX and GIIIB on SR Ca2+ release (measured as the transient maximum upstroke velocity) were no different. Furthermore, this reduction in SR Ca2+ release was comparable with the value that we obtained previously when total INa was inactivated with a ramp applied under voltage clamp. Finally, SR Ca2+ release was unaltered by the same ramp in the presence of TTX or GIIB. In contrast, application of ICA had no effect of SR Ca2+ release. These results suggest that Nav1.4 is the main Nav isoform involved in regulating the efficiency of excitation-contraction coupling in rabbit cardiomyocytes by priming the junction via activation of reverse-mode NCX.NEW & NOTEWORTHY A number of studies suggest that the Na+-Ca2+ exchanger (NCX) activated by Na+ currents is involved in the process of excitation-contraction (EC) coupling in cardiac ventricular myocytes. Although insufficient to trigger sarcoplasmic Ca2+ release alone, the Ca2+ entering through reverse NCX during an action potential can prime the dyadic cleft and increase the Ca2+ current coupling fidelity. Using specific Na+ inhibitors in this study, we show that in rabbit ventricular cells the skeletal Na+ channel isoform (Nav1.4) is the main isoform responsible for this priming. Our study provides insights into a mechanism that may have an increased relevance where EC coupling is remodeled.


Assuntos
Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Potenciais de Ação , Animais , Sinalização do Cálcio , Células Cultivadas , Feminino , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Coelhos , Bloqueadores dos Canais de Sódio/farmacologia
2.
PLoS One ; 15(6): e0234913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574189

RESUMO

The transcriptional regulatory machinery in mitochondrial bioenergetics is complex and is still not completely understood. We previously demonstrated that the histone methyltransferase Smyd1 regulates mitochondrial energetics. Here, we identified Perm1 (PPARGC-1 and ESRR-induced regulator, muscle specific 1) as a downstream target of Smyd1 through RNA-seq. Chromatin immunoprecipitation assay showed that Smyd1 directly interacts with the promoter of Perm1 in the mouse heart, and this interaction was significantly reduced in mouse hearts failing due to pressure overload for 4 weeks, where Perm1 was downregulated (24.4 ± 5.9% of sham, p<0.05). Similarly, the Perm1 protein level was significantly decreased in patients with advanced heart failure (55.2 ± 13.1% of donors, p<0.05). Phenylephrine (PE)-induced hypertrophic stress in cardiomyocytes also led to downregulation of Perm1 (55.7 ± 5.7% of control, p<0.05), and adenovirus-mediated overexpression of Perm1 rescued PE-induced downregulation of estrogen-related receptor alpha (ERRα), a key transcriptional regulator of mitochondrial energetics, and its target gene, Ndufv1 (Complex I). Pathway enrichment analysis of cardiomyocytes in which Perm1 was knocked-down by siRNA (siPerm1), revealed that the most downregulated pathway was metabolism. Cell stress tests using the Seahorse XF analyzer showed that basal respiration and ATP production were significantly reduced in siPerm1 cardiomyocytes (40.7% and 23.6% of scrambled-siRNA, respectively, both p<0.05). Luciferase reporter gene assay further revealed that Perm1 dose-dependently increased the promoter activity of the ERRα gene and known target of ERRα, Ndufv1 (Complex I). Overall, our study demonstrates that Perm1 is an essential regulator of cardiac energetics through ERRα, as part of the Smyd1 regulatory network.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Animais , Metilação de DNA , Modelos Animais de Doenças , Regulação para Baixo , Complexo I de Transporte de Elétrons/genética , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/cirurgia , Transplante de Coração , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Fenilefrina/farmacologia , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , RNA-Seq , Ratos , Receptores de Estrogênio/genética , Receptor ERRalfa Relacionado ao Estrogênio
3.
J Physiol ; 597(15): 3817-3832, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31173379

RESUMO

KEY POINTS: Association of plasma membrane BKCa channels with BK-ß subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCa channel (mitoBKCa ) by BK-ß subunits is not established. MitoBKCa -α and the regulatory BK-ß1 subunit associate in mouse cardiac mitochondria. A large fraction of mitoBKCa display properties similar to that of plasma membrane BKCa when associated with BK-ß1 (left-shifted voltage dependence of activation, V1/2  = -55 mV, 12 µm matrix Ca2+ ). In BK-ß1 knockout mice, cardiac mitoBKCa displayed a low Po and a depolarized V1/2 of activation (+47 mV at 12 µm matrix Ca2+ ) Co-expression of BKCa with the BK-ß1 subunit in HeLa cells doubled the density of BKCa in mitochondria. The present study supports the view that the cardiac mitoBKCa channel is functionally modulated by the BK-ß1 subunit; proper targeting and activation of mitoBKCa shapes mitochondrial Ca2+ handling. ABSTRACT: Association of the plasma membrane BKCa channel with auxiliary BK-ß1-4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa ) with regulatory subunits is unknown. We report that mitoBKCa functionally associates with its regulatory subunit BK-ß1 in adult rodent cardiomyocytes. Cardiac mitoBKCa is a calcium- and voltage-activated channel that is sensitive to paxilline with a large conductance for K+ of 300 pS. Additionally, mitoBKCa displays a high open probability (Po ) and voltage half-activation (V1/2  = -55 mV, n = 7) resembling that of plasma membrane BKCa when associated with its regulatory BK-ß1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa -α and its BK-ß1 subunit. Mitochondria from the BK-ß1 knockout (KO) mice showed sparse mitoBKCa currents (five patches with mitoBKCa activity out of 28 total patches from n = 5 different hearts), displaying a depolarized V1/2 of activation (+47 mV in 12 µm matrix Ca2+ ). The reduced activity of mitoBKCa was accompanied by a high expression of BKCa transcript in the BK-ß1 KO, suggesting a lower abundance of mitoBKCa channels in this genotype. Accordingly, BK-ß1subunit increased the localization of BKDEC (i.e. the splice variant of BKCa that specifically targets mitochondria) into mitochondria by two-fold. Importantly, both paxilline-treated and BK-ß1 KO mitochondria displayed a more rapid Ca2+ overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCa associates with its regulatory BK-ß1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCa channel that helps to maintain mitochondrial Ca2+ homeostasis.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Ativação do Canal Iônico , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Masculino , Miócitos Cardíacos/fisiologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
4.
Antioxid Redox Signal ; 31(6): 444-457, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31088290

RESUMO

Aims: Autophagy is a catabolic process required for the maintenance of cardiac health. Insulin and insulin-like growth factor 1 (IGF-1) are potent inhibitors of autophagy and as such, one would predict that autophagy will be increased in the insulin-resistant/diabetic heart. However, autophagy is rather decreased in the hearts of diabetic/insulin-resistant mice. The aim of this study is to determine the contribution of IGF-1 receptor signaling to autophagy suppression in insulin receptor (IR)-deficient hearts. Results: Absence of IRs in the heart was associated with reduced autophagic flux, and further inhibition of autophagosome clearance reduced survival, impaired contractile function, and enhanced myocyte loss. Contrary to the in vivo setting, isolated cardiomyocytes from IR-deficient hearts exhibited unrestrained autophagy in the absence of insulin, whereas addition of insulin was able to suppress autophagy. To investigate the mechanisms involved in the maintenance of the responsiveness to insulin in IR-deficient hearts, we generated mice lacking both IRs and one copy of the IGF-1 receptor (IGF-1R) in cardiac cells and showed that these mice had increased autophagy. Innovation and Conclusion: This study unveils a new mechanism by which IR-deficient hearts can still respond to insulin to suppress autophagy, in part, through activation of IGF-1R signaling. This is a highly significant observation because it is the first to show that systemic hyperinsulinemia can suppress autophagy in IR-deficient hearts through IGF-1R signaling.


Assuntos
Autofagia , Hiperinsulinismo/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/deficiência , Transdução de Sinais , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Ecocardiografia , Coração , Hiperinsulinismo/tratamento farmacológico , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Am J Physiol Heart Circ Physiol ; 316(6): H1507-H1527, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30875259

RESUMO

The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 µM), PKA blocker H89 (10 µM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.


Assuntos
Arritmias Cardíacas/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Frequência Cardíaca , Ventrículos do Coração/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Função Ventricular Esquerda , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Estimulação Cardíaca Artificial , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Preparação de Coração Isolado , Masculino , Fosfoproteínas Fosfatases/antagonistas & inibidores , Coelhos , Transdução de Sinais , Fatores de Tempo , Função Ventricular Direita
6.
J Mol Cell Cardiol ; 113: 22-32, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28962857

RESUMO

Calcium (Ca2+) influx into the mitochondrial matrix stimulates ATP synthesis. Here, we investigate whether mitochondrial Ca2+ transport pathways are altered in the setting of deficient mitochondrial energy synthesis, as increased matrix Ca2+ may provide a stimulatory boost. We focused on mitochondrial cardiomyopathies, which feature such dysfunction of oxidative phosphorylation. We study a mouse model where the main transcription factor for mitochondrial DNA (transcription factor A, mitochondrial, Tfam) has been disrupted selectively in cardiomyocytes. By the second postnatal week (10-15day old mice), these mice have developed a dilated cardiomyopathy associated with impaired oxidative phosphorylation. We find evidence of increased mitochondrial Ca2+ during this period using imaging, electrophysiology, and biochemistry. The mitochondrial Ca2+ uniporter, the main portal for Ca2+ entry, displays enhanced activity, whereas the mitochondrial sodium-calcium (Na+-Ca2+) exchanger, the main portal for Ca2+ efflux, is inhibited. These changes in activity reflect changes in protein expression of the corresponding transporter subunits. While decreased transcription of Nclx, the gene encoding the Na+-Ca2+ exchanger, explains diminished Na+-Ca2+ exchange, the mechanism for enhanced uniporter expression appears to be post-transcriptional. Notably, such changes allow cardiac mitochondria from Tfam knockout animals to be far more sensitive to Ca2+-induced increases in respiration. In the absence of Ca2+, oxygen consumption declines to less than half of control values in these animals, but rebounds to control levels when incubated with Ca2+. Thus, we demonstrate a phenotype of enhanced mitochondrial Ca2+ in a mitochondrial cardiomyopathy model, and show that such Ca2+ accumulation is capable of rescuing deficits in energy synthesis capacity in vitro.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 312(4): H752-H767, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130334

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 µM) and its inactive analog KN92 (2.75 µM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 µM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 µM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 µM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.


Assuntos
Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Circulação Coronária/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Sulfonamidas/farmacologia , Fibrilação Ventricular/fisiopatologia , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Feminino , Técnicas In Vitro , Masculino , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Obstrução do Fluxo Ventricular Externo/induzido quimicamente , Obstrução do Fluxo Ventricular Externo/diagnóstico por imagem
9.
J Mol Cell Cardiol ; 68: 1-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389341

RESUMO

Excitation-contraction coupling in cardiomyocytes requires Ca(2+) influx through dihydropyridine receptors in the sarcolemma, which gates Ca(2+) release through sarcoplasmic ryanodine receptors (RyRs). Ca(2+) influx, release and diffusion produce a cytosolic Ca(2+) transient. Here, we investigated the relationship between Ca(2+) transients and the spatial arrangement of the sarcolemma including the transverse tubular system (t-system). To accomplish this, we studied isolated ventricular myocytes of rabbit, which exhibit a heterogeneously distributed t-system. We developed protocols for fluorescent labeling and triggered two-dimensional confocal microscopic imaging with high spatiotemporal resolution. From sequences of microscopic images, we measured maximal upstroke velocities and onset times of local Ca(2+) transients together with their distance from the sarcolemma. Analyses indicate that not only sarcolemmal release sites, but also those that are within 1 µm of the sarcolemma actively release Ca(2+). Our data also suggest that release does not occur at sites further than 2.5 µm from the sarcolemma. The experimental data are in agreement with results from a mathematical model of Ca(2+) release and diffusion. Our findings can be explained by a modified local control model, which constrains the region of regenerative activation of non-junctional RyR clusters. We believe that this model will be useful for describing excitation-contraction coupling in cardiac myocytes with a sparse t-system, which includes those from diseased heart tissue as well as atrial myocytes of some species.


Assuntos
Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Ventrículos do Coração/citologia , Modelos Biológicos , Contração Miocárdica , Miócitos Cardíacos/ultraestrutura , Coelhos , Sarcolema/ultraestrutura
10.
IEEE Trans Med Imaging ; 32(5): 862-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23340590

RESUMO

Electrophysiological modeling of cardiac tissue is commonly based on functional and structural properties measured in experiments. Our knowledge of these properties is incomplete, in particular their remodeling in disease. Here, we introduce a methodology for quantitative tissue characterization based on fluorescent labeling, 3-D scanning confocal microscopy, image processing and reconstruction of tissue micro-structure at sub-micrometer resolution. We applied this methodology to normal rabbit ventricular tissue and tissue from hearts with myocardial infarction. Our analysis revealed that the volume fraction of fibroblasts increased from 4.83±0.42% (mean ± standard deviation) in normal tissue up to 6.51±0.38% in myocardium from infarcted hearts. The myocyte volume fraction decreased from 76.20±9.89% in normal to 73.48±8.02% adjacent to the infarct. Numerical field calculations on 3-D reconstructions of the extracellular space yielded an extracellular longitudinal conductivity of 0.264±0.082 S/m with an anisotropy ratio of 2.095±1.11 in normal tissue. Adjacent to the infarct, the longitudinal conductivity increased up to 0.400±0.051 S/m, but the anisotropy ratio decreased to 1.295±0.09. Our study indicates an increased density of gap junctions proximal to both fibroblasts and myocytes in infarcted versus normal tissue, supporting previous hypotheses of electrical coupling of fibroblasts and myocytes in infarcted hearts. We suggest that the presented methodology provides an important contribution to modeling normal and diseased tissue. Applications of the methodology include the clinical characterization of disease-associated remodeling.


Assuntos
Coração/fisiologia , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Modelos Cardiovasculares , Miocárdio/química , Miocárdio/citologia , Animais , Conexinas/química , Condutividade Elétrica , Fenômenos Eletrofisiológicos , Fibroblastos/citologia , Corantes Fluorescentes/química , Junções Comunicantes/química , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Coelhos
11.
Circ Res ; 110(4): 588-97, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22253411

RESUMO

RATIONALE: Cardiac resynchronization therapy (CRT) is an established treatment for patients with chronic heart failure. However, CRT-associated structural and functional remodeling at cellular and subcellular levels is only partly understood. OBJECTIVE: To investigate the effects of CRT on subcellular structures and protein distributions associated with excitation-contraction coupling of ventricular cardiomyocytes. METHODS AND RESULTS: Our studies revealed remodeling of the transverse tubular system (t-system) and the spatial association of ryanodine receptor (RyR) clusters in a canine model of dyssynchronous heart failure (DHF). We did not find this remodeling in a synchronous heart failure model based on atrial tachypacing. Remodeling in DHF ranged from minor alterations in anterior left ventricular myocytes to nearly complete loss of the t-system and dissociation of RyRs from sarcolemmal structures in lateral cells. After CRT, we found a remarkable and almost complete reverse remodeling of these structures despite persistent left ventricular dysfunction. Studies of whole-cell Ca(2+) transients showed that the structural remodeling and restoration were accompanied with remodeling and restoration of Ca(2+) signaling. CONCLUSIONS: DHF is associated with regional remodeling of the t-system. Myocytes undergo substantial structural and functional restoration after only 3 weeks of CRT. The finding suggests that t-system status can provide an early marker of the success of this therapy. The results could also guide us to an understanding of the loss and remodeling of proteins associated with the t-system. The steep relationship between free Ca(2+) and contraction suggests that some restoration of Ca(2+) release units will have a disproportionately large effect on contractility.


Assuntos
Cálcio/metabolismo , Terapia de Ressincronização Cardíaca , Acoplamento Excitação-Contração , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Cães , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Potenciais da Membrana , Contração Miocárdica , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Fatores de Tempo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
12.
J Physiol ; 588(Pt 21): 4249-60, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20837647

RESUMO

Ca2+ transients were activated in rabbit ventricular cells by a sequence of action potential shaped voltage clamps. After activating a series of control transients, Na+ currents (INa) were inactivated with a ramp from -80 to -40 mV (1.5 s) prior to the action potential clamp. The transients were detected with the calcium indicator Fluo-4 and an epifluorescence system. With zero Na+ in the pipette INa inactivation produced a decline in the SR Ca2+ release flux (measured as the maximum rate of rise of the transient) of 27 ± 4% (n = 9, P < 0.001) and a peak amplitude reduction of 10 ± 3% (n = 9, P < 0.05). With 5 mm Na+ in the pipette the reduction in release flux was greater (34 ± 4%, n = 4, P < 0.05). The ramp effectively inactivates INa without changing ICa, and there was no significant change in the transmembrane Ca2+ flux after the inactivation of INa. We next evoked action potentials under current clamp. TTX at 100 nm, which selectively blocks neuronal isoforms of Na+ channels, produced a decline in SR Ca2+ release flux of 35 ± 3% (n = 6, P < 0.001) and transient amplitude of 12 ± 2% (n = 6, P < 0.05). This effect was similar to the effect of INa inactivation on release flux. We conclude that a TTX-sensitive INa is essential for efficient triggering of SR Ca2+ release. We propose that neuronal Na+ channels residing within couplons activate sufficient reverse Na+-Ca2+ exchanger (NCX) to prime the junctional cleft with Ca2+. The results can be explained if non-linearities in excitation-contraction coupling mechanisms modify the coupling fidelity of ICa, which is known to be low at positive potentials.


Assuntos
Potenciais de Ação/fisiologia , Ventrículos do Coração/citologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Sódio/fisiologia , Animais , Cálcio/metabolismo , Modelos Animais , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Coelhos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Canais de Sódio/efeitos dos fármacos , Trocador de Sódio e Cálcio/efeitos dos fármacos , Trocador de Sódio e Cálcio/fisiologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA