Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Curr Biol ; 33(9): 1716-1727.e3, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37071995

RESUMO

The postembryonic formation of lateral roots (LRs) starts in internal root tissue, the pericycle. An important question of LR development is how the connection of the primary root vasculature with that of the emerging LR is established and whether the pericycle and/or other cell types direct this process. Here, using clonal analysis and time-lapse experiments, we show that both the procambium and pericycle of the primary root (PR) affect the LR vascular connectivity in a coordinated manner. We show that during LR formation, procambial derivates switch their identity and become precursors of xylem cells. These cells, together with the pericycle-origin xylem, participate in the formation of what we call a "xylem bridge" (XB), which establishes the xylem connection between the PR and the nascent LR. If the parental protoxylem cell fails to differentiate, XB is still sometimes formed but via a connection with metaxylem cells, highlighting that this process has some plasticity. Using mutant analyses, we show that the early specification of XB cells is determined by CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors (TFs). Subsequent XB cell differentiation is marked by the deposition of secondary cell walls (SCWs) in spiral and reticulate/scalariform patterns, which is dependent on the VASCULAR-RELATED NAC-DOMAIN (VND) TFs. XB elements were also observed in Solanum lycopersicum, suggesting that this mechanism may be more widely conserved in plants. Together, our results suggest that plants maintain vascular procambium activity, which safeguards the functionality of newly established lateral organs by assuring the continuity of the xylem strands throughout the root system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Raízes de Plantas , Xilema , Diferenciação Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
3.
Nat Commun ; 13(1): 7452, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460648

RESUMO

The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.


Assuntos
Algoritmos , Medicamentos Genéricos , Fases de Leitura , Microscopia de Fluorescência , Corantes Fluorescentes
4.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278862

RESUMO

A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/genética , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Treonina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética , Proliferação de Células/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Curr Opin Plant Biol ; 65: 102115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742019

RESUMO

Lateral root development is essential for the establishment of the plant root system. Lateral root initiation is a multistep process that impacts early primordium morphogenesis and is linked to the formation of a morphogenetic field of pericycle founder cells. Gradual recruitment of founder cells builds this morphogenetic field in an auxin-dependent manner. The complex process of lateral root primordium morphogenesis includes several subprocesses, which are presented in this review. The underlying cellular and molecular mechanisms of these subprocesses are examined.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Morfogênese/genética , Raízes de Plantas
6.
Plant Physiol ; 188(2): 846-860, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791452

RESUMO

Arabidopsis (Arabidopsis thaliana) primary and lateral roots (LRs) are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challenge of analyzing complex interactions within cell populations. We developed a plugin "Live Plant Cell Tracking" (LiPlaCeT) coupled to the publicly available ImageJ image analysis program and generated a pipeline that allows, with the aid of LiPlaCeT, 4D cell tracking and lineage analysis of populations of dividing and growing cells. The LiPlaCeT plugin contains ad hoc ergonomic curating tools, making it very simple to use for manual cell tracking, especially when the signal-to-noise ratio of images is low or variable in time or 3D space and when automated methods may fail. Performing time-lapse experiments and using cell-tracking data extracted with the assistance of LiPlaCeT, we accomplished deep analyses of cell proliferation and clonal relations in the whole developing LR primordia and constructed genealogical trees. We also used cell-tracking data for endodermis cells of the root apical meristem (RAM) and performed automated analyses of cell population dynamics using ParaView software (also publicly available). Using the RAM as an example, we also showed how LiPlaCeT can be used to generate information at the whole-tissue level regarding cell length, cell position, cell growth rate, cell displacement rate, and proliferation activity. The pipeline will be useful in live-imaging studies of roots and other plant organs to understand complex interactions within proliferating and growing cell populations. The plugin includes a step-by-step user manual and a dataset example that are available at https://www.ibt.unam.mx/documentos/diversos/LiPlaCeT.zip.


Assuntos
Arabidopsis/fisiologia , Proliferação de Células , Rastreamento de Células/instrumentação , Células Vegetais/fisiologia , Desenvolvimento Vegetal , Arabidopsis/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 117(34): 20943-20949, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817465

RESUMO

The reiterative process of lateral root (LR) formation is widespread and underlies root system formation. However, early LR primordium (LRP) morphogenesis is not fully understood. In this study, we conducted both a clonal analysis and time-lapse experiments to decipher the pattern and sequence of pericycle founder cell (FC) participation in LR formation. Most commonly, LRP initiation starts with the specification of just one FC longitudinally. Clonal and anatomical analyses suggested that a single FC gradually recruits neighboring pericycle cells to become FCs. This conclusion was validated by long-term time-lapse live-imaging experiments. Once the first FC starts to divide, its immediate neighbors, both lengthwise and laterally, are recruited within the hour, after which they recruit their neighboring cells within a few hours. Therefore, LRP initiation is a gradual, multistep process. FC recruitment is auxin-dependent and is abolished by treatment with a polar auxin transport inhibitor. Furthermore, FC recruitment establishes a morphogenetic field where laterally peripheral cells have a lower auxin response, which is associated with a lower proliferation potential, compared to centrally located FCs. The lateral boundaries of the morphogenetic field are determined by phloem-adjacent pericycle cells, which are the last cells to be recruited as FCs. The proliferation potential of these cells is limited, but their recruitment is essential for root system formation, resulting in the formation of a new vascular connection between the nascent and parent root, which is crucial for establishing a continuous and efficient vascular system.


Assuntos
Arabidopsis/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Meristema/metabolismo , Morfogênese/genética , Organogênese Vegetal/fisiologia , Floema/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Front Plant Sci ; 10: 206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941149

RESUMO

Morphogenetic processes are the basis of new organ formation. Lateral roots (LRs) are the building blocks of the root system. After LR initiation and before LR emergence, a new lateral root primordium (LRP) forms. During this period, the organization and functionality of the prospective LR is defined. Thus, proper LRP morphogenesis is a decisive process during root system formation. Most current studies on LRP morphogenesis have been performed in the model species Arabidopsis thaliana; little is known about this process in other angiosperms. To understand LRP morphogenesis from a wider perspective, we review both contemporary and earlier studies. The latter are largely forgotten, and we attempted to integrate them into present-day research. In particular, we consider in detail the participation of parent root tissue in LRP formation, cell proliferation and timing during LRP morphogenesis, and the hormonal and genetic regulation of LRP morphogenesis. Cell type identity acquisition and new stem cell establishement during LRP morphogenesis are also considered. Within each of these facets, unanswered or poorly understood questions are identified to help define future research in the field. Finally, we discuss emerging research avenues and new technologies that could be used to answer the remaining questions in studies of LRP morphogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA