Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1268686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915569

RESUMO

Background: Multiparameter flow cytometry (FC) immunophenotyping is a key tool for detailed identification and characterization of human blood leucocytes, including B-lymphocytes and plasma cells (PC). However, currently used conventional data analysis strategies require extensive expertise, are time consuming, and show limited reproducibility. Objective: Here, we designed, constructed and validated an automated database-guided gating and identification (AGI) approach for fast and standardized in-depth dissection of B-lymphocyte and PC populations in human blood. Methods: For this purpose, 213 FC standard (FCS) datafiles corresponding to umbilical cord and peripheral blood samples from healthy and patient volunteers, stained with the 14-color 18-antibody EuroFlow BIgH-IMM panel, were used. Results: The BIgH-IMM antibody panel allowed identification of 117 different B-lymphocyte and PC subsets. Samples from 36 healthy donors were stained and 14 of the datafiles that fulfilled strict inclusion criteria were analysed by an expert flow cytometrist to build the EuroFlow BIgH-IMM database. Data contained in the datafiles was then merged into a reference database that was uploaded in the Infinicyt software (Cytognos, Salamanca, Spain). Subsequently, we compared the results of manual gating (MG) with the performance of two classification algorithms -hierarchical algorithm vs two-step algorithm- for AGI of the cell populations present in 5 randomly selected FCS datafiles. The hierarchical AGI algorithm showed higher correlation values vs conventional MG (r2 of 0.94 vs. 0.88 for the two-step AGI algorithm) and was further validated in a set of 177 FCS datafiles against conventional expert-based MG. For virtually all identifiable cell populations a highly significant correlation was observed between the two approaches (r2>0.81 for 79% of all B-cell populations identified), with a significantly lower median time of analysis per sample (6 vs. 40 min, p=0.001) for the AGI tool vs. MG, respectively and both intra-sample (median CV of 1.7% vs. 10.4% by MG, p<0.001) and inter-expert (median CV of 3.9% vs. 17.3% by MG by 2 experts, p<0.001) variability. Conclusion: Our results show that compared to conventional FC data analysis strategies, the here proposed AGI tool is a faster, more robust, reproducible, and standardized approach for in-depth analysis of B-lymphocyte and PC subsets circulating in human blood.


Assuntos
Linfócitos B , Plasmócitos , Humanos , Reprodutibilidade dos Testes , Imunofenotipagem , Leucócitos
2.
Front Immunol ; 14: 1285088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035080

RESUMO

Introduction: Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID). Methods: Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61). Results: All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/µL) in 8/9 cases-, together with decreased numbers of total CD4+ T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCRγδ+ T-cells (p ≤ 0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4+ T-cells revealed significantly decreased blood counts of naïve, central memory (CM) and transitional memory (TM) TCD4+ cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c+ and CD141+ myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCRγδ+ T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected. Discussion: Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.


Assuntos
Agamaglobulinemia , Imunodeficiência de Variável Comum , Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Timoma , Neoplasias do Timo , Adulto , Humanos , Timoma/complicações , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/complicações , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/complicações , Neoplasias do Timo/complicações , Doenças da Imunodeficiência Primária/complicações
3.
Am J Hematol ; 98(12): 1909-1922, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792579

RESUMO

Low-count monoclonal B-cell lymphocytosis (MBLlo ) has been associated with an underlying immunodeficiency and has recently emerged as a new risk factor for severe COVID-19. Here, we investigated the kinetics of immune cell and antibody responses in blood during COVID-19 of MBLlo versus non-MBL patients. For this study, we analyzed the kinetics of immune cells in blood of 336 COVID-19 patients (74 MBLlo and 262 non-MBL), who had not been vaccinated against SARS-CoV-2, over a period of 43 weeks since the onset of infection, using high-sensitivity flow cytometry. Plasma levels of anti-SARS-CoV-2 antibodies were measured in parallel by ELISA. Overall, early after the onset of symptoms, MBLlo COVID-19 patients showed increased neutrophil, monocyte, and particularly, plasma cell (PC) counts, whereas eosinophil, dendritic cell, basophil, and lymphocyte counts were markedly decreased in blood of a variable percentage of samples, and with a tendency toward normal levels from week +5 of infection onward. Compared with non-MBL patients, MBLlo COVID-19 patients presented higher neutrophil counts, together with decreased pre-GC B-cell, dendritic cell, and innate-like T-cell counts. Higher PC levels, together with a delayed PC peak and greater plasma levels of anti-SARS-CoV-2-specific antibodies (at week +2 to week +4) were also observed in MBLlo patients. In summary, MBLlo COVID-19 patients share immune profiles previously described for patients with severe SARS-CoV-2 infection, associated with a delayed but more pronounced PC and antibody humoral response once compared with non-MBL patients.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Linfocitose , Neoplasias de Plasmócitos , Lesões Pré-Cancerosas , Humanos , Linfócitos B , Leucemia Linfocítica Crônica de Células B/diagnóstico , Formação de Anticorpos , SARS-CoV-2 , Anticorpos Antivirais
5.
Vaccines (Basel) ; 10(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214595

RESUMO

Pertussis is a vaccine-preventable disease caused by the bacterium Bordetella pertussis. Over the past years, the incidence and mortality of pertussis increased significantly. A possible cause is the switch from whole-cell to acellular pertussis vaccines, although other factors may also contribute. Here, we applied high-dimensional flow cytometry to investigate changes in B cells in individuals of different ages and distinct priming backgrounds upon administration of an acellular pertussis booster vaccine. Participants were divided over four age cohorts. We compared longitudinal kinetics within each cohort and between the different cohorts. Changes in the B-cell compartment were correlated to numbers of vaccine-specific B- and plasma cells and serum Ig levels. Expansion and maturation of plasma cells 7 days postvaccination was the most prominent cellular change in all age groups and was most pronounced for more mature IgG1+ plasma cells. Plasma cell responses were stronger in individuals primed with whole-cell vaccine than in individuals primed with acellular vaccine. Moreover, IgG1+ and IgA1+ plasma cell expansion correlated with FHA-, Prn-, or PT- specific serum IgG or IgA levels. Our study indicates plasma cells as a potential early cellular marker of an immune response and contributes to understanding differences in immune responses between age groups and primary vaccination backgrounds.

6.
Rev Esp Cardiol ; 75(9): 735-747, 2022 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-35039707

RESUMO

Introduction and objectives: The cardiac sequelae of SARS-CoV-2 infection are still poorly documented. We conducted a cross-sectional study in healthcare workers to report evidence of pericardial and myocardial involvement after SARS-CoV-2 infection. Methods: We studied 139 healthcare workers with confirmed past SARS-CoV-2 infection. Participants underwent clinical assessment, electrocardiography, and laboratory tests, including immune cell profiling and cardiac magnetic resonance (CMR). Clinically suspected pericarditis was diagnosed when classic criteria were present and clinically suspected myocarditis was based on the combination of at least 2 CMR criteria. Results: Median age was 52 (41-57) years, 71.9% were women, and 16.5% were previously hospitalized for COVID-19 pneumonia. On examination (10.4 [9.3-11.0] weeks after infection-like symptoms), participants showed hemodynamic stability. Chest pain, dyspnea or palpitations were present in 41.7% participants, electrocardiographic abnormalities in 49.6%, NT-proBNP elevation in 7.9%, troponin in 0.7%, and CMR abnormalities in 60.4%. A total of 30.9% participants met criteria for either pericarditis and/or myocarditis: isolated pericarditis was diagnosed in 5.8%, myopericarditis in 7.9%, and isolated myocarditis in 17.3%. Most participants (73.2%) showed altered immune cell counts in blood, particularly decreased eosinophil (27.3%; P < .001) and increased cytotoxic T cell numbers (17.3%; P < .001). Clinically suspected pericarditis was associated (P < .005) with particularly elevated cytotoxic T cells and decreased eosinophil counts, while participants diagnosed with clinically suspected myopericarditis or myocarditis had lower (P < .05) neutrophil counts, natural killer-cells, and plasma cells. Conclusions: Pericardial and myocardial involvement with clinical stability are frequent after SARS-CoV-2 infection and are associated with specific immune cell profiles.Full English text available from:www.revespcardiol.org/en.

7.
Rev Esp Cardiol (Engl Ed) ; 75(9): 734-746, 2022 Sep.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34866030

RESUMO

INTRODUCTION AND OBJECTIVES: The cardiac sequelae of SARS-CoV-2 infection are still poorly documented. We conducted a cross-sectional study in healthcare workers to report evidence of pericardial and myocardial involvement after SARS-CoV-2 infection. METHODS: We studied 139 healthcare workers with confirmed past SARS-CoV-2 infection. Participants underwent clinical assessment, electrocardiography, and laboratory tests, including immune cell profiling and cardiac magnetic resonance (CMR). Clinically suspected pericarditis was diagnosed when classic criteria were present and clinically suspected myocarditis was based on the combination of at least 2 CMR criteria. RESULTS: Median age was 52 (41-57) years, 71.9% were women, and 16.5% were previously hospitalized for COVID-19 pneumonia. On examination (10.4 [9.3-11.0] weeks after infection-like symptoms), participants showed hemodynamic stability. Chest pain, dyspnea or palpitations were present in 41.7% participants, electrocardiographic abnormalities in 49.6%, NT-proBNP elevation in 7.9%, troponin in 0.7%, and CMR abnormalities in 60.4%. A total of 30.9% participants met criteria for either pericarditis and/or myocarditis: isolated pericarditis was diagnosed in 5.8%, myopericarditis in 7.9%, and isolated myocarditis in 17.3%. Most participants (73.2%) showed altered immune cell counts in blood, particularly decreased eosinophil (27.3%; P<.001) and increased cytotoxic T cell numbers (17.3%; P <.001). Clinically suspected pericarditis was associated (P <.005) with particularly elevated cytotoxic T cells and decreased eosinophil counts, while participants diagnosed with clinically suspected myopericarditis or myocarditis had lower (P <.05) neutrophil counts, natural killer-cells, and plasma cells. CONCLUSIONS: Pericardial and myocardial involvement with clinical stability are frequent after SARS-CoV-2 infection and are associated with specific immune cell profiles.


Assuntos
COVID-19 , Miocardite , Pericardite , Arritmias Cardíacas/complicações , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , Feminino , Pessoal de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/diagnóstico , Miocardite/epidemiologia , Miocardite/etiologia , Pericardite/diagnóstico , Pericardite/epidemiologia , Pericardite/etiologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA