Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(8)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483541

RESUMO

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Assuntos
Compostos de Anilina , Caprilatos , Glioblastoma , Complexo Cetoglutarato Desidrogenase , Sulfetos , Sulfonamidas , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Compostos de Anilina/farmacologia , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia
2.
Clin Cancer Res ; 30(2): 420-435, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37611074

RESUMO

PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.


Assuntos
Neoplasias Encefálicas , Receptor de Morte Celular Programada 1 , Humanos , Camundongos , Animais , Neoplasias Encefálicas/patologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linfócitos T CD8-Positivos , Microambiente Tumoral , Quinase 4 Dependente de Ciclina/metabolismo
3.
Neuro Oncol ; 26(5): 889-901, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134951

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; however, only a subset of patients with brain metastasis (BM) respond to ICI. Activating mutations in the mitogen-activated protein kinase signaling pathway are frequent in BM. The objective of this study was to evaluate whether therapeutic inhibition of extracellular signal-regulated kinase (ERK) can improve the efficacy of ICI for BM. METHODS: We used immunotypical mouse models of BM bearing dual extracranial/intracranial tumors to evaluate the efficacy of single-agent and dual-agent treatment with selective ERK inhibitor LY3214996 (LY321) and anti-programmed death receptor 1 (PD-1) antibody. We verified target inhibition and drug delivery, then investigated treatment effects on T-cell response and tumor-immune microenvironment using high-parameter flow cytometry, multiplex immunoassays, and T-cell receptor profiling. RESULTS: We found that dual treatment with LY321 and anti-PD-1 significantly improved overall survival in 2 BRAFV600E-mutant murine melanoma models but not in KRAS-mutant murine lung adenocarcinoma. We demonstrate that although LY321 has limited blood-brain barrier (BBB) permeability, combined LY321 and anti-PD-1 therapy increases tumor-infiltrating CD8+ effector T cells, broadens the T-cell receptor repertoire in the extracranial tumor, enriches T-cell clones shared by the periphery and brain, and reduces immunosuppressive cytokines and cell populations in tumors. CONCLUSIONS: Despite the limited BBB permeability of LY321, combined LY321 and anti-PD-1 treatment can improve intracranial disease control by amplifying extracranial immune responses, highlighting the role of extracranial tumors in driving intracranial response to treatment. Combined ERK and PD-1 inhibition is a promising therapeutic approach, worthy of further investigation for patients with melanoma BM.


Assuntos
Neoplasias Encefálicas , Inibidores de Checkpoint Imunológico , Melanoma , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas B-raf , Animais , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/imunologia , Melanoma/genética , Humanos , Imunoterapia/métodos , Feminino , Modelos Animais de Doenças , Microambiente Tumoral/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Mutação
5.
Mol Cell ; 82(16): 3061-3076.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35948010

RESUMO

Lactate accumulates to a significant amount in glioblastomas (GBMs), the most common primary malignant brain tumor with an unfavorable prognosis. However, it remains unclear whether lactate is metabolized by GBMs. Here, we demonstrated that lactate rescued patient-derived xenograft (PDX) GBM cells from nutrient-deprivation-mediated cell death. Transcriptome analysis, ATAC-seq, and ChIP-seq showed that lactate entertained a signature of oxidative energy metabolism. LC/MS analysis demonstrated that U-13C-lactate elicited substantial labeling of TCA-cycle metabolites, acetyl-CoA, and histone protein acetyl-residues in GBM cells. Lactate enhanced chromatin accessibility and histone acetylation in a manner dependent on oxidative energy metabolism and the ATP-citrate lyase (ACLY). Utilizing orthotopic PDX models of GBM, a combined tracer experiment unraveled that lactate carbons were substantially labeling the TCA-cycle metabolites. Finally, pharmacological blockage of oxidative energy metabolism extended overall survival in two orthotopic PDX models in mice. These results establish lactate metabolism as a novel druggable pathway for GBM.


Assuntos
Glioblastoma , Acetilação , Animais , Linhagem Celular Tumoral , Epigênese Genética , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos
6.
Clin Cancer Res ; 28(9): 1881-1895, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35417530

RESUMO

PURPOSE: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism. EXPERIMENTAL DESIGN: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM. Orthotopic GBM models were used for in vivo studies. RESULTS: We showed that activation of the mitochondrial ClpP protease by mutant ClpP (Y118A) or through utilization of second-generation imipridone compounds (ONC206 and ONC212) in combination with genetic interference of HDAC1 and HDAC2 as well as with global (panobinostat) or selective (romidepsin) HDAC inhibitors caused synergistic reduction of viability in GBM model systems, which was mediated by interference with tricarboxylic acid cycle activity and GBM cell respiration. This effect was partially mediated by activation of apoptosis along with activation of caspases regulated chiefly by Bcl-xL and Mcl-1. Knockdown of the ClpP protease or ectopic expression of a ClpP D190A mutant substantially rescued from the inhibition of oxidative energy metabolism as well as from the reduction of cellular viability by ClpP activators and the combination treatment, respectively. Finally, utilizing GBM PDX models, we demonstrated that the combination treatment of HDAC inhibitors and imipridones prolonged host survival more potently than single treatments or vehicle in vivo. CONCLUSIONS: Collectively, these observations suggest that the efficacy of HDAC inhibitors might be significantly enhanced through ClpP activators in model systems of human GBM.


Assuntos
Glioblastoma , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidase Clp/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Peptídeo Hidrolases/genética , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 12(1): 4808, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376683

RESUMO

Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.


Assuntos
MicroRNAs/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Regeneração/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Células Cultivadas , Ecocardiografia , Regulação da Expressão Gênica , Humanos , Hiperplasia/genética , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Clin Invest ; 130(7): 3699-3716, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315286

RESUMO

The Warburg effect is a tumor-related phenomenon that could potentially be targeted therapeutically. Here, we showed that glioblastoma (GBM) cultures and patients' tumors harbored super-enhancers in several genes related to the Warburg effect. By conducting a transcriptome analysis followed by ChIP-Seq coupled with a comprehensive metabolite analysis in GBM models, we found that FDA-approved global (panobinostat, vorinostat) and selective (romidepsin) histone deacetylase (HDAC) inhibitors elicited metabolic reprogramming in concert with disruption of several Warburg effect-related super-enhancers. Extracellular flux and carbon-tracing analyses revealed that HDAC inhibitors blunted glycolysis in a c-Myc-dependent manner and lowered ATP levels. This resulted in the engagement of oxidative phosphorylation (OXPHOS) driven by elevated fatty acid oxidation (FAO), rendering GBM cells dependent on these pathways. Mechanistically, interference with HDAC1/-2 elicited a suppression of c-Myc protein levels and a concomitant increase in 2 transcriptional drivers of oxidative metabolism, PGC1α and PPARD, suggesting an inverse relationship. Rescue and ChIP experiments indicated that c-Myc bound to the promoter regions of PGC1α and PPARD to counteract their upregulation driven by HDAC1/-2 inhibition. Finally, we demonstrated that combination treatment with HDAC and FAO inhibitors extended animal survival in patient-derived xenograft model systems in vivo more potently than single treatments in the absence of toxicity.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Glioblastoma , Glicólise/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Ácidos Graxos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HCT116 , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Humanos , Camundongos , PPAR delta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elementos de Resposta
9.
Cancer Res ; 80(1): 30-43, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31694905

RESUMO

The receptor kinase c-MET has emerged as a target for glioblastoma therapy. However, treatment resistance emerges inevitably. Here, we performed global metabolite screening with metabolite set enrichment coupled with transcriptome and gene set enrichment analysis and proteomic screening, and identified substantial reprogramming of tumor metabolism involving oxidative phosphorylation and fatty acid oxidation (FAO) with substantial accumulation of acyl-carnitines accompanied by an increase of PGC1α in response to genetic (shRNA and CRISPR/Cas9) and pharmacologic (crizotinib) inhibition of c-MET. Extracellular flux and carbon tracing analyses (U-13C-glucose, U-13C-glutamine, and U-13C-palmitic acid) demonstrated enhanced oxidative metabolism, which was driven by FAO and supported by increased anaplerosis of glucose carbons. These findings were observed in concert with increased number and fusion of mitochondria and production of reactive oxygen species. Genetic interference with PGC1α rescued this oxidative phenotype driven by c-MET inhibition. Silencing and chromatin immunoprecipitation experiments demonstrated that cAMP response elements binding protein regulates the expression of PGC1α in the context of c-MET inhibition. Interference with both oxidative phosphorylation (metformin, oligomycin) and ß-oxidation of fatty acids (etomoxir) enhanced the antitumor efficacy of c-MET inhibition. Synergistic cell death was observed with c-MET inhibition and gamitrinib treatment. In patient-derived xenograft models, combination treatments of crizotinib and etomoxir, and crizotinib and gamitrinib were significantly more efficacious than single treatments and did not induce toxicity. Collectively, we have unraveled the mechanistic underpinnings of c-MET inhibition and identified novel combination therapies that may enhance its therapeutic efficacy. SIGNIFICANCE: c-MET inhibition causes profound metabolic reprogramming that can be targeted by drug combination therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Sinergismo Farmacológico , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Humanos , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Proteômica , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
EMBO Mol Med ; 11(10): e10769, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468706

RESUMO

Liver-X-receptor (LXR) agonists are known to bear anti-tumor activity. However, their efficacy is limited and additional insights regarding the underlying mechanism are necessary. By performing transcriptome analysis coupled with global polar metabolite screening, we show that LXR agonists, LXR623 and GW3965, enhance synergistically the anti-proliferative effect of BH3 mimetics in solid tumor malignancies, which is predominantly mediated by cell death with features of apoptosis and is rescued by exogenous cholesterol. Extracellular flux analysis and carbon tracing experiments (U-13 C-glucose and U-13 C-glutamine) reveal that within 5 h, activation of LXRß results in reprogramming of tumor cell metabolism, leading to suppression of mitochondrial respiration, a phenomenon not observed in normal human astrocytes. LXR activation elicits a suppression of respiratory complexes at the protein level by reducing their stability. In turn, energy starvation drives an integrated stress response (ISR) that up-regulates pro-apoptotic Noxa in an ATF4-dependent manner. Cholesterol and nucleotides rescue from the ISR elicited by LXR agonists and from cell death induced by LXR agonists and BH3 mimetics. In conventional and patient-derived xenograft models of colon carcinoma, melanoma, and glioblastoma, the combination treatment of ABT263 and LXR agonists reduces tumor sizes significantly stronger than single treatments. Therefore, the combination treatment of LXR agonists and BH3 mimetics might be a viable efficacious treatment approach for solid malignancies.


Assuntos
Carcinoma/fisiopatologia , Respiração Celular/efeitos dos fármacos , Glioblastoma/fisiopatologia , Receptores X do Fígado/agonistas , Melanoma/fisiopatologia , Proteína bcl-X/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Benzoatos/metabolismo , Benzilaminas/metabolismo , Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Humanos , Indazóis/metabolismo , Melanoma/tratamento farmacológico , Metabolômica , Modelos Teóricos , Resultado do Tratamento
11.
Cell Rep ; 27(9): 2759-2771.e5, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141697

RESUMO

Loss of functional cardiomyocytes is a major determinant of heart failure after myocardial infarction. Previous high throughput screening studies have identified a few microRNAs (miRNAs) that can induce cardiomyocyte proliferation and stimulate cardiac regeneration in mice. Here, we show that all of the most effective of these miRNAs activate nuclear localization of the master transcriptional cofactor Yes-associated protein (YAP) and induce expression of YAP-responsive genes. In particular, miR-199a-3p directly targets two mRNAs coding for proteins impinging on the Hippo pathway, the upstream YAP inhibitory kinase TAOK1, and the E3 ubiquitin ligase ß-TrCP, which leads to YAP degradation. Several of the pro-proliferative miRNAs (including miR-199a-3p) also inhibit filamentous actin depolymerization by targeting Cofilin2, a process that by itself activates YAP nuclear translocation. Thus, activation of YAP and modulation of the actin cytoskeleton are major components of the pro-proliferative action of miR-199a-3p and other miRNAs that induce cardiomyocyte proliferation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Proliferação de Células , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Citoesqueleto de Actina , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Cofilina 2/genética , Cofilina 2/metabolismo , Feminino , Masculino , Ratos , Proteínas de Sinalização YAP
12.
J Cell Mol Med ; 22(11): 5583-5595, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138533

RESUMO

Cardiospheres (CSps) are self-assembling clusters of a heterogeneous population of poorly differentiated cells outgrowing from in vitro cultured cardiac explants. Scanty information is available on the molecular pathways regulating CSp growth and their differentiation potential towards cardiac and vascular lineages. Here we report that Notch1 stimulates a massive increase in both CSp number and size, inducing a peculiar gene expression programme leading to a cardiovascular molecular signature. These effects were further enhanced using Adeno-Associated Virus (AAV)-based gene transfer of activated Notch1-intracellular domain (N1-ICD) or soluble-Jagged1 (sJ1) ligand to CSp-forming cells. A peculiar effect was exploited by selected pro-proliferating miRNAs: hsa-miR-590-3p induced a cardiovascular gene expression programme, while hsa-miR-199a-3p acted as the most potent stimulus for the activation of the Notch pathway, thus showing that, unlike in adult cardiomyocytes, these miRNAs involve Notch signalling activation in CSps. Our results identify Notch1 as a crucial regulator of CSp growth and differentiation along the vascular lineage, raising the attracting possibility that forced activation of this pathway might be exploited to promote in vitro CSp expansion as a tool for toxicology screening and cell-free therapeutic strategies.


Assuntos
Proteína Jagged-1/genética , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Receptor Notch1/genética , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Dependovirus , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Humanos , Miócitos Cardíacos/fisiologia , Transdução de Sinais/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA