Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Neurocrit Care ; 36(1): 130-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34232458

RESUMO

INTRODUCTION: Seizures and abnormal periodic or rhythmic patterns are observed on continuous electroencephalography monitoring (cEEG) in up to half of patients hospitalized with moderate to severe traumatic brain injury (TBI). We aimed to determine the impact of seizures and abnormal periodic or rhythmic patterns on cognitive outcome 3 months following moderate to severe TBI. METHODS: This was a post hoc analysis of the multicenter randomized controlled phase 2 INTREPID2566 clinical trial conducted from 2010 to 2016 across 20 United States Level I trauma centers. Patients with nonpenetrating TBI and postresuscitation Glasgow Coma Scale scores 4-12 were included. Bedside cEEG was initiated per protocol on admission to intensive care, and the burden of ictal-interictal continuum (IIC) patterns, including seizures, was quantified. A summary global cognition score at 3 months following injury was used as the primary outcome. RESULTS: 142 patients (age mean + / - standard deviation 32 + / - 13 years; 131 [92%] men) survived with a mean global cognition score of 81 + / - 15; nearly one third were considered to have poor functional outcome. 89 of 142 (63%) patients underwent cEEG, of whom 13 of 89 (15%) had severe IIC patterns. The quantitative burden of IIC patterns correlated inversely with the global cognition score (r = - 0.57; p = 0.04). In multiple variable analysis, the log-transformed burden of severe IIC patterns was independently associated with the global cognition score after controlling for demographics, premorbid estimated intelligence, injury severity, sedatives, and antiepileptic drugs (odds ratio 0.73, 95% confidence interval 0.60-0.88; p = 0.002). CONCLUSIONS: The burden of seizures and abnormal periodic or rhythmic patterns was independently associated with worse cognition at 3 months following TBI. Their impact on longer-term cognitive endpoints and the potential benefits of seizure detection and treatment in this population warrant prospective study.


Assuntos
Lesões Encefálicas Traumáticas , Eletroencefalografia , Adulto , Lesões Encefálicas Traumáticas/complicações , Cognição , Eletroencefalografia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Convulsões/diagnóstico , Adulto Jovem
2.
Pharmacol Biochem Behav ; 203: 173154, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609599

RESUMO

Interest in developing NMDA receptor antagonists with reduced side-effects for neurological and psychiatric disorders has been re-energized by the recent introduction of esketamine into clinical practice for treatment-resistant depression. Structural analogs of dextromethorphan bind with low affinity to the NMDA receptor ion channel, have functional effects in vivo, and generally display a lower propensity for side-effects than that of ketamine and other higher affinity antagonists. As such, the aim of the present study was to determine whether a series of N-substituted-3-alkoxy-substituted dextromethorphan analogs produce their anticonvulsant effects through NMDA receptor blockade. Compounds were studied against NMDA-induced seizures in rats. Compounds were administered intracerebroventricularly in order to mitigate confounds of drug metabolism that arise from systemic administration. Comparison of the anticonvulsant potencies to their affinities for NMDA, σ1, and σ2 binding sites were made in order to evaluate the contribution of these receptors to anticonvulsant efficacy. The potencies to block convulsions were positively associated with their affinities to bind to the NMDA receptor ion channel ([3H]-TCP binding) (r = 0.71, p < 0.05) but not to σ1 receptors ([3H]-SKF 10047 binding) (r = -0.31, p = 0.46) or to σ2 receptors ([3H]-DTG binding) (p = -0.38, p = 0.36). This is the first report demonstrating that these dextromethorphan analogs are functional NMDA receptor antagonists in vivo. Given their potential therapeutic utility and favorable side-effect profiles, such low affinity NMDA receptor antagonists could be considered for further development in neurological (e.g., anticonvulsant) and psychiatric (e.g., antidepressant) disorders.


Assuntos
Anticonvulsivantes/administração & dosagem , Dextrometorfano/análogos & derivados , Dextrometorfano/administração & dosagem , Dextrorfano/administração & dosagem , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , N-Metilaspartato/efeitos adversos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Álcoois/química , Animais , Anticonvulsivantes/metabolismo , Sítios de Ligação , Dextrometorfano/metabolismo , Dextrorfano/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/metabolismo , Infusões Intraventriculares , Ligantes , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Resultado do Tratamento , Receptor Sigma-1
3.
Crit Care Med ; 47(4): 574-582, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30624278

RESUMO

OBJECTIVES: After traumatic brain injury, continuous electroencephalography is widely used to detect electrographic seizures. With the development of standardized continuous electroencephalography terminology, we aimed to describe the prevalence and burden of ictal-interictal patterns, including electrographic seizures after moderate-to-severe traumatic brain injury and to correlate continuous electroencephalography features with functional outcome. DESIGN: Post hoc analysis of the prospective, randomized controlled phase 2 multicenter INTREPID study (ClinicalTrials.gov: NCT00805818). Continuous electroencephalography was initiated upon admission to the ICU. The primary outcome was the 3-month Glasgow Outcome Scale-Extended. Consensus electroencephalography reviews were performed by raters certified in standardized continuous electroencephalography terminology blinded to clinical data. Rhythmic, periodic, or ictal patterns were referred to as "ictal-interictal continuum"; severe ictal-interictal continuum was defined as greater than or equal to 1.5 Hz lateralized rhythmic delta activity or generalized periodic discharges and any lateralized periodic discharges or electrographic seizures. SETTING: Twenty U.S. level I trauma centers. PATIENTS: Patients with nonpenetrating traumatic brain injury and postresuscitation Glasgow Coma Scale score of 4-12 were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 152 patients with continuous electroencephalography (age 34 ± 14 yr; 88% male), 22 (14%) had severe ictal-interictal continuum including electrographic seizures in four (2.6%). Severe ictal-interictal continuum burden correlated with initial prognostic scores, including the International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (r = 0.51; p = 0.01) and Injury Severity Score (r = 0.49; p = 0.01), but not with functional outcome. After controlling clinical covariates, unfavorable outcome was independently associated with absence of posterior dominant rhythm (common odds ratio, 3.38; 95% CI, 1.30-9.09), absence of N2 sleep transients (3.69; 1.69-8.20), predominant delta activity (2.82; 1.32-6.10), and discontinuous background (5.33; 2.28-12.96) within the first 72 hours of monitoring. CONCLUSIONS: Severe ictal-interictal continuum patterns, including electrographic seizures, were associated with clinical markers of injury severity but not functional outcome in this prospective cohort of patients with moderate-to-severe traumatic brain injury. Importantly, continuous electroencephalography background features were independently associated with functional outcome and improved the area under the curve of existing, validated predictive models.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/reabilitação , Estado Terminal/terapia , Eletroencefalografia/métodos , Índice de Gravidade de Doença , Adulto , Estudos de Coortes , Feminino , Escala de Resultado de Glasgow , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Resultado do Tratamento
4.
J Neurotrauma ; 36(2): 348-359, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29987972

RESUMO

Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), markers of glial and neuronal cell body injury, respectively, have been previously selected by the Operation Brain Trauma Therapy (OBTT) pre-clinical therapy and biomarker screening consortium as drug development tools. However, traumatic axonal injury (TAI) also represents a major consequence and determinant of adverse outcomes after traumatic brain injury (TBI). Thus, biomarkers capable of assessing TAI are much needed. Neurofilaments (NFs) are found exclusively in axons. Here, we evaluated phospho-neurofilament-H (pNF-H) protein as a possible new TAI marker in serum and cerebrospinal fluid (CSF) across three rat TBI models in studies carried out by the OBTT consortium, namely, controlled cortical impact (CCI), parasagittal fluid percussion (FPI), and penetrating ballistics-like brain injury (PBBI). We indeed found that CSF and serum pNF-H levels are robustly elevated by 24 h post-injury in all three models. Further, in previous studies by OBTT, levetiracetam showed the most promising benefits, whereas nicotinamide showed limited benefit only at high dose (500 mg/kg). Thus, serum samples from the same repository collected by OBTT were evaluated. Treatment with 54 mg/kg intravenously of levetiracetam in the CCI model and 170 mg/kg in the PBBI model significantly attenuated pNF-H levels at 24 h post-injury as compared to respective vehicle groups. In contrast, nicotinamide (50 or 500 mg/kg) showed no reduction of pNF-H levels in CCI or PBBI models. Our current study suggests that pNF-H is a useful theranostic blood-based biomarker for TAI across different rodent TBI models. In addition, our data support levetiracetam as the most promising TBI drug candidate screened by OBTT to date.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Proteínas de Neurofilamentos/sangue , Animais , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Modelos Animais de Doenças , Levetiracetam/farmacologia , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Niacinamida/farmacologia , Nootrópicos/farmacologia , Ratos , Ratos Sprague-Dawley , Nanomedicina Teranóstica/métodos , Complexo Vitamínico B/farmacologia
5.
Mil Med ; 183(suppl_1): 303-312, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635589

RESUMO

Operation brain trauma therapy (OBTT) is a multi-center, pre-clinical drug and biomarker screening consortium for traumatic brain injury (TBI). Therapies are screened across three rat models (parasagittal fluid percussion injury, controlled cortical impact [CCI], and penetrating ballistic-like brain injury). Operation brain trauma therapy seeks to define therapies that show efficacy across models that should have the best chance in randomized clinical trials (RCTs) and/or to define model-dependent therapeutic effects, including TBI protein biomarker responses, to guide precision medicine-based clinical trials in targeted pathologies. The results of the first five therapies tested by OBTT (nicotinamide, erythropoietin, cyclosporine [CsA], simvastatin, and levetiracetam) were published in the Journal of Neurotrauma. Operation brain trauma therapy now describes preliminary results on four additional therapies (glibenclamide, kollidon-VA64, AER-271, and amantadine). To date, levetiracetam was beneficial on cognitive outcome, histology, and/or biomarkers in two models. The second most successful drug, glibenclamide, improved motor function and histology in CCI. Other therapies showed model-dependent effects (amantadine and CsA). Critically, glial fibrillary acidic protein levels predicted treatment effects. Operation brain trauma therapy suggests that levetiracetam merits additional pre-clinical and clinical evaluation and that glibenclamide and amantadine merit testing in specific TBI phenotypes. Operation brain trauma therapy has established that rigorous, multi-center consortia could revolutionize TBI therapy and biomarker development.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Programas de Rastreamento/métodos , Animais , Biomarcadores/sangue , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/sangue , Programas de Rastreamento/tendências , Ratos , Ratos Sprague-Dawley/lesões , Recuperação de Função Fisiológica/efeitos dos fármacos , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/sangue
6.
Brain Inj ; 31(9): 1168-1176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981339

RESUMO

As a follow-up to the 2008 state-of-the-art (SOTA) conference on traumatic brain injuries (TBIs), the 2015 event organized by the United States Department of Veterans Affairs (VA) Office of Research and Development (ORD) analysed the knowledge gained over the last 7 years as it relates to basic scientific methods, experimental findings, diagnosis, therapy, and rehabilitation of TBIs and blast-induced neurotraumas (BINTs). The current article summarizes the discussions and recommendations of the scientific panel attending the Preclinical Modeling and Therapeutic Development Workshop of the conference, with special emphasis on factors slowing research progress and recommendations for ways of addressing the most significant pitfalls.


Assuntos
Traumatismos por Explosões/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , Modelos Animais de Doenças , Militares , United States Department of Veterans Affairs/tendências , Animais , Traumatismos por Explosões/psicologia , Traumatismos por Explosões/terapia , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Previsões , Humanos , Militares/psicologia , Estados Unidos/epidemiologia
7.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S25-S34, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452872

RESUMO

BACKGROUND: Posttraumatic seizures are a medical problem affecting patients with traumatic brain injury. Yet effective treatment is lacking owing to the limitations of antiepileptic drugs (AEDs) applicable to these patients. METHODS: In this study, we evaluated the dose-response efficacy of levetiracetam (12.5-100.0 mg/kg) and gabapentin (1.25-25.0 mg/kg) administered either individually or in pairs at fixed-dose ratios as a combination in mitigating posttraumatic nonconvulsive seizures induced by severe penetrating ballistic-like brain injury (PBBI) in rats. Seizures were detected by continuous electroencephalogram (EEG) monitoring for 72 hours postinjury. Animals were treated twice per day for 3 days by intravenous injections. RESULTS: Both levetiracetam (25-100 mg/kg) and gabapentin (6.25-25 mg/kg) significantly reduced PBBI-induced seizure frequency by 44% to 73% and 61% to 69%, and seizure duration by 45% to 64% and 70% to 78%, respectively. However, the two drugs manifested different dose-response profiles. Levetiracetam attenuated seizure activity in a dose-dependent fashion, whereas the beneficial effects of gabapentin plateaued across the three highest doses tested. Combined administration of levetiracetam and gabapentin mirrored the more classic dose-response profile of levetiracetam monotherapy. However, no additional benefit was derived from the addition of gabapentin. Furthermore, isobolographic analysis of the combination dose-response profile of levetiracetam and gabapentin failed to reach the expected level of additivity, suggesting an unlikelihood of favorable interactions between these two drugs against spontaneously occurring posttraumatic seizure activities at the particular set of dose ratios tested. CONCLUSION: This study was the first attempt to apply isobolographic approach to studying AED combination therapy in the context of spontaneously occurring posttraumatic seizures. Despite the failure to achieve additivity from levetiracetam and gabapentin combination, it is important to recognize the objectivity of the isobolographic approach in the evaluation of AED combination therapy against seizures directly associated with brain injuries.


Assuntos
Aminas/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Traumatismos Cranianos Penetrantes/complicações , Piracetam/análogos & derivados , Convulsões/tratamento farmacológico , Convulsões/etiologia , Ácido gama-Aminobutírico/farmacologia , Animais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Eletroencefalografia , Gabapentina , Levetiracetam , Masculino , Piracetam/farmacologia , Ratos , Ratos Sprague-Dawley
8.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S145-S149, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452880

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small stable RNAs that regulate translational degradation or repression of genes involved in brain trauma-mediated inflammation. More recently, miRNAs have emerged as potential novel TBI biomarkers. The aim of this study was to determine if a select set of miRNAs (miR-21, Let-7i, miR-124a, miR-146a, miR-107) that were previously associated with TBI models and clinical studies would be dysregulated and correlated to inflammatory cytokine abundance in the rat penetrating ballistic-like brain injury (PBBI) model. METHODS: Adult male Sprague-Dawley rats received a unilateral frontal 10% PBBI, which produces a temporary cavity. Sham animals received a craniotomy only. Ipsilateral brain tissue and serum were collected 4 hours to 7 days post-injury. Quantitation of miR-21, Let-7i, miR-124a, miR-146a, or miR-107 levels was conducted using Taqman PCR assays normalized to the endogenous reference, U6 snRNA. Brain tissue derived from matching cohorts was used to determine 1L-1beta and IL-6 levels by enzyme-linked immunosorbent assay. RESULTS: Brain tissue Let-7i and miR-21 increased at 4 hours and 1 day, whereas miR-124a and miR-107 were enhanced only 1 day post-injury. MiR-146a displayed a biphasic response and increased 1 day and 7 days, whereas elevation of miR-21 was sustained 1 day to 7 days after PBBI. Pathway analysis indicated that miRNAs were linked to inflammatory proteins, IL-6 and IL-1beta. Confirmation by enzyme-linked immunosorbent assay indicated that both cytokines were increased and peaked at 1 day, but fell at 3 days through 7 days after PBBI, indicating an inverse relationship with miRNA abundance. Serum Let-7i, alone, was differentially abundant 7 days after PBBI. CONCLUSION: Brain tissue-derived miRNAs linked to increased cytokine levels demonstrates a plausible therapeutic target of TBI-induced inflammation. Suppression of serum derived Let-7i may have utility as a biomarker of subacute injury progression or therapeutic responses.


Assuntos
Citocinas/metabolismo , Traumatismos Cranianos Penetrantes/metabolismo , MicroRNAs/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Masculino , Medicina Militar , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley
9.
J Neurotrauma ; 34(19): 2768-2789, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326890

RESUMO

Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies. Increased attention has focused on identification of diagnostic markers that can prognostically serve as indices of brain health after injury, revealing the temporal profile of vulnerability to a second insult. Such markers may demarcate adequate recovery periods before concussed patients can return to required activities. We developed a noninvasive closed-head impact model that captures the hallmark symptoms of concussion in the absence of gross tissue damage. Animals were subjected to single or repeated concussive impact and examined using a battery of neurological, vestibular, sensorimotor, and molecular metrics. A single concussion induced transient, but marked, acute neurological impairment, gait alterations, neuronal death, and increased glial fibrillary acidic protein (GFAP) expression in brain tissue. As expected, repeated concussions exacerbated sensorimotor dysfunction, prolonged gait abnormalities, induced neuroinflammation, and upregulated GFAP and tau. These animals also exhibited chronic functional neurological impairments with sustained astrogliosis and white matter thinning. Acute changes in molecular signatures correlated with behavioral impairments, whereas increased times to regaining consciousness and balance impairments were associated with higher GFAP and neuroinflammation. Overall, behavioral consequences of either single or repeated concussive impact injuries appeared to resolve more quickly than the underlying molecular, metabolic, and neuropathological abnormalities. This observation, which is supported by similar studies in other mTBI models, underscores the critical need to develop more objective prognostic measures for guiding return-to-play decisions.


Assuntos
Concussão Encefálica , Modelos Animais de Doenças , Animais , Concussão Encefálica/complicações , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Neurotrauma ; 34(11): 1981-1995, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249550

RESUMO

Penetrating traumatic brain injury (PTBI) is one of the major cause of death and disability worldwide. Previous studies with penetrating ballistic-like brain injury (PBBI), a PTBI rat model revealed widespread perilesional neurodegeneration, similar to that seen in humans following gunshot wound to the head, which is unmitigated by any available therapies to date. Therefore, we evaluated human neural stem cell (hNSC) engraftment to putatively exploit the potential of cell therapy that has been seen in other central nervous system injury models. Toward this objective, green fluorescent protein (GFP) labeled hNSC (400,000 per animal) were transplanted in immunosuppressed Sprague-Dawley (SD), Fisher, and athymic (ATN) PBBI rats 1 week after injury. Tacrolimus (3 mg/kg 2 days prior to transplantation, then 1 mg/kg/day), methylprednisolone (10 mg/kg on the day of transplant, 1 mg/kg/week thereafter), and mycophenolate mofetil (30 mg/kg/day) for 7 days following transplantation were used to confer immunosuppression. Engraftment in SD and ATN was comparable at 8 weeks post-transplantation. Evaluation of hNSC differentiation and distribution revealed increased neuronal differentiation of transplanted cells with time. At 16 weeks post-transplantation, neither cell proliferation nor glial lineage markers were detected. Transplanted cell morphology was similar to that of neighboring host neurons, and there was relatively little migration of cells from the peritransplant site. By 16 weeks, GFP-positive processes extended both rostrocaudally and bilaterally into parenchyma, spreading along host white matter tracts, traversing the internal capsule, and extending ∼13 mm caudally from transplantation site reaching into the brainstem. In a Morris water maze test at 8 weeks post-transplantation, animals with transplants had shorter latency to platform than vehicle-treated animals. However, weak injury-induced cognitive deficits in the control group at the delayed time point confounded benefits of durable engraftment and neuronal differentiation. Therefore, these results justify further studies to progress towards clinical translation of hNSC therapy for PTBI.


Assuntos
Diferenciação Celular/fisiologia , Transtornos Cognitivos/terapia , Traumatismos Cranianos Penetrantes/terapia , Células-Tronco Neurais/transplante , Neurônios/fisiologia , Transplante de Células-Tronco/métodos , Animais , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Transtornos Cognitivos/diagnóstico , Traumatismos Cranianos Penetrantes/diagnóstico , Humanos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Ratos Sprague-Dawley
11.
J Trauma Acute Care Surg ; 81(5): 860-867, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27769083

RESUMO

BACKGROUND: Energy metabolic dysfunction is a key determinant of cellular damage following traumatic brain injury and may be worsened by additional insults. This study evaluated the acute/subacute effects of combined hypoxemia (HX) and hemorrhagic shock (HS) on cerebral interstitial levels of glucose, lactate, and pyruvate in a rat model of penetrating ballistic-like brain injury (PBBI). METHODS: Rats were randomly assigned into the sham control, PBBI, and combined injury (P + HH) groups. The P + HH group received PBBI followed by 30-minute HX and 30 minute HS. Samples were collected from striatum (perilesional region) using intracerebral microdialysis at 1 to 3 hours after injury and then at 1 to 3, 7, and 14 days after injury. Glucose, lactate, and pyruvate were measured in the dialysate samples. RESULTS: Glucose levels dropped significantly up to 24 hours following injury in both PBBI and P + HH groups (p < 0.05). A reduction in pyruvate was observed in the PBBI group from 24 to 72 hours after injury (vs. sham). In the P + HH group, the pyruvate was significantly reduced from 2 to 24 hours after injury (p < 0.05 vs. PBBI). This prominent reduction persisted for 14 days after injury. In contrast, lactate levels were significantly increased in the PBBI group during the first 24 hours after injury and remained elevated out to 7 days. The P + HH group exhibited a similar trend of lactate increase as did the PBBI group. Critically, P + HH further increased the lactate-to-pyruvate ratio by more than twofold (vs. PBBI) during the first 24 hours. The ratio reached a peak at 2 hours and then gradually decreased, but the level remained significantly higher than that in the sham control from 2 to 14 days after injury (p < 0.05). CONCLUSION: This study identified the temporal profile of energy-related neurochemical dysregulation induced by PBBI and combined injury in the perilesional region. Furthermore, combined HX and HS further reduced the pyruvate level and increased the lactate-to-pyruvate ratio following PBBI, indicating the exacerbation of posttraumatic metabolic perturbation.


Assuntos
Encéfalo/metabolismo , Traumatismos Cranianos Penetrantes/metabolismo , Hipóxia/metabolismo , Choque Hemorrágico/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Traumatismos Cranianos Penetrantes/complicações , Traumatismos Cranianos Penetrantes/patologia , Hipóxia/etiologia , Ácido Láctico/metabolismo , Masculino , Microdiálise , Ácido Pirúvico/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/etiologia
12.
Methods Mol Biol ; 1462: 89-100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604714

RESUMO

The central nervous system (CNS) is protected by blood-brain barrier (BBB) and blood-cerebrospinal-fluid (CSF) barrier that limit toxic agents and most molecules from penetrating the brain and spinal cord. However, these barriers also prevent most pharmaceuticals from entering into the CNS. Drug delivery to the CNS following neurotrauma is complicated. Although studies have shown BBB permeability increases in various TBI models, it remains as the key mitigating factor for delivering drugs into the CNS. The commonly used methods for drug delivery in preclinical neurotrauma studies include intraperitoneal, subcutaneous, intravenous, and intracerebroventricular delivery. It should be noted that for a drug to be successfully translated into the clinic, it needs to be administered preclinically as it would be anticipated to be administered to patients. And this likely leads to better dose selection of the drug, as well as recognition of any possible side effects, prior to transition into a clinical trial. Additionally, novel approach that is noninvasive and yet circumvents BBB, such as drug delivery through nerve pathways innervating the nasal passages, needs to be investigated in animal models, as it may provide a viable drug delivery method for patients who sustain mild CNS injury or require chronic treatments. Therefore, the focus of this chapter is to present rationales and methods for delivering drugs by IV infusion via the jugular vein, and intranasally in preclinical studies.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Traumatismos do Sistema Nervoso/tratamento farmacológico , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Ratos , Traumatismos do Sistema Nervoso/etiologia , Traumatismos do Sistema Nervoso/patologia
13.
Methods Mol Biol ; 1462: 445-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604733

RESUMO

Animal models of traumatic brain injury (TBI) provide important tools for studying the pathobiology of brain trauma and for evaluating therapeutic or diagnostic targets. Incorporation of additional insults such as hemorrhagic shock (HS) and/or hypoxemia (HX) into these models more closely recreates clinical scenarios as TBI often occurs in conjunction with these systemic insults (i.e., polytrauma). We have developed a rat model of polytrauma that combines penetrating TBI, HS and HX. Following brain trauma, HX was induced by reducing the inspired oxygen while HS was induced by withdrawing blood to lower the mean arterial pressure. The physiological, histological, and behavioral aspects of this animal model have been characterized and have demonstrated exacerbating effects of systemic insults on penetrating TBI. As such, this model may facilitate the use of simultaneous assessments of multiple mechanisms and provide a platform for testing novel diagnostic and therapeutic targets.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Hipóxia/etiologia , Choque Hemorrágico/etiologia , Choque Hemorrágico/patologia , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Ratos , Choque Hemorrágico/fisiopatologia , Traumatismos do Sistema Nervoso/etiologia , Traumatismos do Sistema Nervoso/patologia , Traumatismos do Sistema Nervoso/fisiopatologia
14.
Methods Mol Biol ; 1462: 539-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604737

RESUMO

The Morris water maze (MWM) task is one of the most widely used and versatile tools in behavioral neuroscience for evaluating spatial learning and memory. With regard to detecting cognitive deficits following central nervous system (CNS) injuries, MWM has been commonly utilized in various animal models of neurotrauma, such as fluid percussion injury (FPI), cortical controlled impact (CCI) injury, weight-drop impact injury, and penetrating ballistic-like brain injury (PBBI). More importantly, it serves as a therapeutic index for assessing the efficacy of treatment interventions on cognitive performance following neurotrauma. Thus, it is critical to design an MWM testing paradigm that is sensitive yet discriminating for the purpose of evaluating potential therapeutic interventions. In this chapter, we discuss how multiple test manipulations, including the size of platform, numbers of trials per day, the frequency of retesting intervals, and the texture of platform surface, impact MWM's ability to detect cognitive deficits using a rat model of PBBI.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Cognição , Modelos Animais de Doenças , Aprendizagem em Labirinto , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Masculino , Memória , Ratos , Aprendizagem Espacial
15.
Methods Mol Biol ; 1462: 597-610, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604740

RESUMO

Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI.


Assuntos
Metabolismo Energético , Ensaios de Triagem em Larga Escala , Mitocôndrias/metabolismo , Traumatismos do Sistema Nervoso/etiologia , Traumatismos do Sistema Nervoso/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Masculino , Metabolômica/métodos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismos do Sistema Nervoso/tratamento farmacológico
16.
Methods Mol Biol ; 1462: 735-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604748

RESUMO

Despite prodigious advances in TBI neurobiology research and a broad arsenal of animal models mimicking different aspects of human brain injury, this field has repeatedly experienced collective failures to translate from animals to humans, particularly in the area of therapeutics. This lack of success stems from variability and inconsistent standardization across models and laboratories, as well as insufficient objective and quantifiable diagnostic measures (biomarkers, high-resolution imaging), understanding of the vast clinical heterogeneity, and clinically centered conception of the TBI animal models. Significant progress has been made by establishing well-defined standards for reporting animal studies with "preclinical common data elements" (CDE), and for the reliability and reproducibility in preclinical TBI therapeutic research with the Operation Brain Trauma Therapy (OBTT) consortium. However, to break the chain of failures and achieve a therapeutic breakthrough in TBI will probably require the use of higher species models, specific mechanism-based injury models by which to theranostically targeted treatment portfolios are tested, more creative concepts of therapy intervention including combination therapy and regeneration neurobiology strategies, and the adoption of dosing regimens based upon pharmacokinetic-pharmacodynamic (PK-PD) studies and guided by the injury severity and TBI recovery process.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Animais , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Humanos , Pesquisa Translacional Biomédica
17.
PLoS One ; 11(7): e0158576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27428544

RESUMO

Traumatic brain injury (TBI) is an established risk factor for the development of Alzheimer's disease (AD). Here the effects of severe penetrating TBI on APP and tau cleavage processing were investigated in a rodent model of penetrating ballistic-like brain injury (PBBI). PBBI was induced by stereotactically inserting a perforated steel probe through the right frontal cortex of the anesthetized rat and rapidly inflating/deflating the probe's elastic tubing into an elliptical shaped balloon to 10% of total rat brain volume causing temporary cavitation injury. Separate animals underwent probe injury (PrI) alone without balloon inflation. Shams underwent craniectomy. Brain tissue was collected acutely (4h, 24h, 3d) and subacutely (7d) post-injury and analyzed by immunoblot for full length APP (APP-FL) and APP beta c-terminal fragments (ßCTFs), full length tau (tau-FL) and tau truncation fragments and at 7d for cytotoxic Beta amyloid (Aß) peptides Aß40 and Aß42 analysis. APP-FL was significantly decreased at 3d and 7d following PBBI whereas APP ßCTFs were significantly elevated by 4h post-injury and remained elevated through 7d post-injury. Effects on ßCTFs were mirrored with PrI, albeit to a lesser extent. Aß40 and Aß42 were significantly elevated at 7d following PBBI and PrI. Tau-FL decreased substantially 3d and 7d post-PBBI and PrI. Importantly, a 22 kDa tau fragment (tau22), similar to that found in AD, was significantly elevated by 4h and remained elevated through 7d post-injury. Thus both APP and tau cleavage was dramatically altered in the acute and subacute periods post-injury. As cleavage of these proteins has also been implicated in AD, TBI pathology shown here may set the stage for the later development of AD or other tauopathies.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Traumatismos Cranianos Penetrantes/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/análise , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/patologia , Traumatismos Cranianos Penetrantes/patologia , Masculino , Ratos Sprague-Dawley , Proteínas tau/análise
18.
Curr Protoc Neurosci ; 75: 9.52.1-9.52.16, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27063788

RESUMO

Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post-injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS-R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS-R has proven to be a reliable method differentiating brain-injured rodents from non-brain-injured rodents across many brain injury models.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Transtornos Motores/diagnóstico , Transtornos Motores/etiologia , Transtornos de Sensação/diagnóstico , Transtornos de Sensação/etiologia , Índice de Gravidade de Doença , Animais , Modelos Animais de Doenças , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/etiologia , Camundongos , Equilíbrio Postural/fisiologia , Ratos , Reflexo de Endireitamento/fisiologia , Gravação em Vídeo
19.
Restor Neurol Neurosci ; 34(2): 257-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890099

RESUMO

PURPOSE: We assessed the therapeutic efficacy of FDA-approved anti-epileptic drug Levetiracetam (LEV) to reduce post-traumatic nonconvulsive seizure (NCS) activity and promote neurobehavioral recovery following 10% frontal penetrating ballistic-like brain injury (PBBI) in male Sprague-Dawley rats. METHODS: Experiment 1 anti-seizure study: 50 mg/kg LEV (25 mg/kg maintenance doses) was given twice daily for 3 days (LEV3D) following PBBI; outcome measures included seizures incidence, frequency, duration, and onset. Experiment 2 neuroprotection studies: 50 mg/kg LEV was given twice daily for either 3 (LEV3D) or 10 days (LEV10D) post-injury; outcome measures include motor (rotarod) and cognitive (water maze) functions. RESULTS: LEV3D treatment attenuated seizure activity with significant reductions in NCS incidence (54%), frequency, duration, and delayed latency to seizure onset compared to vehicle treatment. LEV3D treatment failed to improve cognitive or motor performance; however extending the dosing regimen through 10 days post-injury afforded significant neuroprotective benefit. Animals treated with the extended LEV10D dosing regimen showed a twofold improvement in rotarod task latency to fall as well as significantly improved spatial learning performance (24%) in the MWM task. CONCLUSIONS: These findings support the dual anti- seizure and neuroprotective role of LEV, but more importantly identify the importance of an extended dosing protocol which was specific to the therapeutic targets studied.


Assuntos
Traumatismos Cranianos Penetrantes/complicações , Traumatismos Cranianos Penetrantes/tratamento farmacológico , Piracetam/análogos & derivados , Convulsões/tratamento farmacológico , Convulsões/etiologia , Análise de Variância , Animais , Modelos Animais de Doenças , Eletroencefalografia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Levetiracetam , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Piracetam/farmacologia , Piracetam/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Estatísticas não Paramétricas , Fatores de Tempo , Índices de Gravidade do Trauma , Resultado do Tratamento
20.
J Neurotrauma ; 33(6): 513-22, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26439468

RESUMO

Traumatic brain injury (TBI) was the signature injury in both the Iraq and Afghan wars and the magnitude of its importance in the civilian setting is finally being recognized. Given the scope of the problem, new therapies are needed across the continuum of care. Few therapies have been shown to be successful. In severe TBI, current guidelines-based acute therapies are focused on the reduction of intracranial hypertension and optimization of cerebral perfusion. One factor considered important to the failure of drug development and translation in TBI relates to the recognition that TBI is extremely heterogeneous and presents with multiple phenotypes even within the category of severe injury. To address this possibility and attempt to bring the most promising therapies to clinical trials, we developed Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug screening consortium for acute therapies in severe TBI. OBTT was developed to include a spectrum of established TBI models at experienced centers and assess the effect of promising therapies on both conventional outcomes and serum biomarker levels. In this review, we outline the approach to TBI modeling, evaluation of therapies, drug selection, and biomarker assessments for OBTT, and provide a framework for reports in this issue on the first five therapies evaluated by the consortium.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Animais , Biomarcadores , Modelos Animais de Doenças , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA