Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2798: 45-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587735

RESUMO

In this protocol, we present a noninvasive in planta bioimaging technique for the analysis of hydrogen peroxide (H2O2) and glutathione redox potential in adult Arabidopsis thaliana plants. The technique is based on the use of stereo fluorescence microscopy to image A. thaliana plants expressing the two genetically encoded fluorescent sensors roGFP2-Orp1 and Grx1-roGFP2. We provide a detailed step-by-step protocol for performing low magnification imaging with mature plants grown in soil or hydroponic systems. This protocol aims to serve the scientific community by providing an accessible approach to noninvasive in planta bioimaging and data analysis.


Assuntos
Arabidopsis , Peróxido de Hidrogênio , Adulto , Humanos , Corantes , Glutationa , Microscopia de Fluorescência , Oxirredução
2.
J Vis Exp ; (196)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37427934

RESUMO

Cell polarity is a macroscopic phenomenon established by a collection of spatially concentrated molecules and structures that culminate in the emergence of specialized domains at the subcellular level. It is associated with developing asymmetric morphological structures that underlie key biological functions such as cell division, growth, and migration. In addition, the disruption of cell polarity has been linked to tissue-related disorders such as cancer and gastric dysplasia. Current methods to evaluate the spatiotemporal dynamics of fluorescent reporters in individual polarized cells often involve manual steps to trace a midline along the cells' major axis, which is time consuming and prone to strong biases. Furthermore, although ratiometric analysis can correct the uneven distribution of reporter molecules using two fluorescence channels, background subtraction techniques are frequently arbitrary and lack statistical support. This manuscript introduces a novel computational pipeline to automate and quantify the spatiotemporal behavior of single cells using a model of cell polarity: pollen tube/root hair growth and cytosolic ion dynamics. A three-step algorithm was developed to process ratiometric images and extract a quantitative representation of intracellular dynamics and growth. The first step segments the cell from the background, producing a binary mask through a thresholding technique in the pixel intensity space. The second step traces a path through the midline of the cell through a skeletonization operation. Finally, the third step provides the processed data as a ratiometric timelapse and yields a ratiometric kymograph (i.e., a 1D spatial profile through time). Data from ratiometric images acquired with genetically encoded fluorescent reporters from growing pollen tubes were used to benchmark the method. This pipeline allows for faster, less biased, and more accurate representation of the spatiotemporal dynamics along the midline of polarized cells, thus advancing the quantitative toolkit available to investigate cell polarity. The AMEBaS Python source code is available at: https://github.com/badain/amebas.git.


Assuntos
Polaridade Celular , Software , Imagem com Lapso de Tempo , Algoritmos , Tubo Polínico , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA