Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 10(1): 64, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834551

RESUMO

Effective antibody responses are essential to generate protective humoral immunity. Different inflammatory signals polarize T cells towards appropriate effector phenotypes during an infection or immunization. Th1 and Th2 cells have been associated with the polarization of humoral responses. However, T follicular helper cells (Tfh) have a unique ability to access the B cell follicle and support the germinal center (GC) responses by providing B cell help. We investigated the specialization of Tfh cells induced under type-1 and type-2 conditions. We first studied homogenous Tfh cell populations generated by adoptively transferred TCR-transgenic T cells in mice immunized with type-1 and type-2 adjuvants. Using a machine learning approach, we established a gene expression signature that discriminates Tfh cells polarized towards type-1 and type-2 response, defined as Tfh1 and Tfh2 cells. The distinct signatures of Tfh1 and Tfh2 cells were validated against datasets of Tfh cells induced following lymphocytic choriomeningitis virus (LCMV) or helminth infection. We generated single-cell and spatial transcriptomics datasets to dissect the heterogeneity of Tfh cells and their localization under the two immunizing conditions. Besides a distinct specialization of GC Tfh cells under the two immunizations and in different regions of the lymph nodes, we found a population of Gzmk+ Tfh cells specific for type-1 conditions. In human individuals, we could equally identify CMV-specific Tfh cells that expressed Gzmk. Our results show that Tfh cells acquire a specialized function under distinct types of immune responses and with particular properties within the B cell follicle and the GC.

2.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703767

RESUMO

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Medicina de Precisão , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Dispositivos Lab-On-A-Chip , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral
3.
Sci Immunol ; 6(66): eabe8219, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860579

RESUMO

Although CD8+ T cells undergo autonomous clonal proliferation after antigen stimulation in vivo, the expansion of activated CD4+ T cells is limited by intrinsic factors that are poorly characterized. Using genome-wide CRISPR-Cas9 screens and an in vivo system modeling of antigen-experienced CD4+ T cell recruitment and proliferation during a localized immune response, we identified suppressor of cytokine signaling 1 (SOCS1) as a major nonredundant checkpoint imposing a brake on CD4+ T cell proliferation. Using anti­interleukin-2 receptor (IL-2R) blocking antibodies, interferon-γ receptor (IFN-γR) knockout mice, and transcriptomic analysis, we show that SOCS1 is a critical node integrating both IL-2 and IFN-γ signals to block multiple downstream signaling pathways abrogating CD4+ T helper 1 (TH1) cell response. Inactivation of SOCS1 in both murine and human CD4+ T cell antitumor adoptive therapies restored intratumor accumulation, proliferation/survival, persistence, and polyfunctionality and promoted rejection of established tumors. However, in CD8+ T cells, SOCS1 deletion did not affect the proliferation but rather improved survival and effector functions, which allowed for optimal therapeutic outcome when associated with SOCS1 inactivation in CD4+ T cells. Together, these findings identify SOCS1 as a major intracellular negative checkpoint of adoptive T cell response, opening new possibilities to optimize CAR-T cell therapy composition and efficacy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Células Th1/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
4.
Cancer Discov ; 11(8): 1938-1951, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811047

RESUMO

Disruption of splicing patterns due to mutations of genes coding splicing factors in tumors represents a potential source of tumor neoantigens, which would be both public (shared between patients) and tumor-specific (not expressed in normal tissues). In this study, we show that mutations of the splicing factor SF3B1 in uveal melanoma generate such immunogenic neoantigens. Memory CD8+ T cells specific for these neoantigens are preferentially found in 20% of patients with uveal melanoma bearing SF3B1-mutated tumors. Single-cell analyses of neoepitope-specific T cells from the blood identified large clonal T-cell expansions, with distinct effector transcription patterns. Some of these expanded T-cell receptors are also present in the corresponding tumors. CD8+ T-cell clones specific for the neoepitopes specifically recognize and kill SF3B1-mutated tumor cells, supporting the use of this new family of neoantigens as therapeutic targets. SIGNIFICANCE: Mutations of the splicing factor SF3B1 in uveal melanoma generate shared neoantigens that are uniquely expressed by tumor cells, leading to recognition and killing by specific CD8 T cells. Mutations in splicing factors can be sources of new therapeutic strategies applicable to diverse tumors.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Melanoma/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Neoplasias Uveais/genética , Processamento Alternativo , Humanos
5.
Cancer Cell ; 36(6): 597-612.e8, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31708437

RESUMO

Rhabdoid tumors (RTs) are genomically simple pediatric cancers driven by the biallelic inactivation of SMARCB1, leading to SWI/SNF chromatin remodeler complex deficiency. Comprehensive evaluation of the immune infiltrates of human and mice RTs, including immunohistochemistry, bulk RNA sequencing and DNA methylation profiling studies showed a high rate of tumors infiltrated by T and myeloid cells. Single-cell RNA (scRNA) and T cell receptor sequencing highlighted the heterogeneity of these cells and revealed therapeutically targetable exhausted effector and clonally expanded tissue resident memory CD8+ T subpopulations, likely representing tumor-specific cells. Checkpoint blockade therapy in an experimental RT model induced the regression of established tumors and durable immune responses. Finally, we show that one mechanism mediating RTs immunogenicity involves SMARCB1-dependent re-expression of endogenous retroviruses and interferon-signaling activation.


Assuntos
Montagem e Desmontagem da Cromatina/imunologia , Tumor Rabdoide/genética , Tumor Rabdoide/imunologia , Linfócitos T/imunologia , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Imuno-Histoquímica/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
6.
PLoS Pathog ; 15(1): e1007456, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608984

RESUMO

Innate CD8+ T cells express a memory-like phenotype and demonstrate a strong cytotoxic capacity that is critical during the early phase of the host response to certain bacterial and viral infections. These cells arise in the thymus and depend on IL-4 and IL-15 for their development. Even though innate CD8+ T cells exist in the thymus of WT mice in low numbers, they are highly enriched in KO mice that lack certain kinases, leading to an increase in IL-4 production by thymic NKT cells. Our work describes that in C57BL/6 WT mice undergoing a Th1 biased infectious disease, the thymus experiences an enrichment of single positive CD8 (SP8) thymocytes that share all the established phenotypical and functional characteristics of innate CD8+ T cells. Moreover, through in vivo experiments, we demonstrate a significant increase in survival and a lower parasitemia in mice adoptively transferred with SP8 thymocytes from OT I-T. cruzi-infected mice, demonstrating that innate CD8+ thymocytes are able to protect against a lethal T. cruzi infection in an Ag-independent manner. Interestingly, we obtained similar results when using thymocytes from systemic IL-12 + IL-18-treated mice. This data indicates that cytokines triggered during the acute stage of a Th1 infectious process induce thymic production of IL-4 along with IL-15 expression resulting in an adequate niche for development of innate CD8+ T cells as early as the double positive (DP) stage. Our data demonstrate that the thymus can sense systemic inflammatory situations and alter its conventional CD8 developmental pathway when a rapid innate immune response is required to control different types of pathogens.


Assuntos
Interleucina-15/metabolismo , Interleucina-4/metabolismo , Timo/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Citocinas/metabolismo , Feminino , Imunidade Inata/genética , Interleucina-12/metabolismo , Interleucina-15/genética , Interleucina-18/metabolismo , Interleucina-4/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Transdução de Sinais , Células Th1/imunologia , Timócitos/metabolismo , Timo/metabolismo , Timo/patologia
7.
Front Immunol ; 9: 444, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593717

RESUMO

Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Doenças Autoimunes/etiologia , Proliferação de Células , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Terapia de Imunossupressão , Ativação Linfocitária , Neoplasias/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA