Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 231(4): e13570, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073482

RESUMO

AIM: Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS: Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS: On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION: These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.


Assuntos
Neuropilina-1 , Fragmentos de Peptídeos , Animais , Cromogranina A , Humanos , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Ratos
2.
FASEB J ; 33(6): 7734-7747, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973759

RESUMO

The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cromogranina A/metabolismo , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
3.
Acta Histochem ; 120(7): 654-666, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30195500

RESUMO

This review aims to summarize the changes of the NOS/NO system which occur in the lungs, gills, kidney, heart, and myotomal muscle of air breathing fish of the genus Protopterus, i.e. P. dolloi and P. annectens, in relation to the switch from freshwater to aestivation, and vice-versa. The modifications of NOS and its partners Akt and Hsp-90, and HIF-1α, detected by immunohistochemical and molecular biology methods, are discussed together with the apoptosis rate, evaluated by TUNEL. We hypothesize that these molecular components are key elements of the stress-induced signal transduction/integration networks which allow the lungfish to overcome the dramatic environmental challenges experienced at the beginning, during, and at the end of the dry season.


Assuntos
Peixes/fisiologia , Óxido Nítrico Sintase/fisiologia , Óxido Nítrico/fisiologia , Animais , Western Blotting , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/fisiologia , Microscopia Confocal , Contração Muscular , Músculo Esquelético/fisiologia , Miocárdio , Osmorregulação , Respiração
4.
Prog Neurobiol ; 154: 37-61, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28442394

RESUMO

The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.


Assuntos
Cromograninas/metabolismo , Animais , Humanos , Peptídeos/metabolismo
5.
PLoS One ; 10(3): e0119790, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774921

RESUMO

Catestatin (Cst) is a 21-amino acid peptide deriving from Chromogranin A. Cst exerts an overall protective effect against an excessive sympathetic stimulation of cardiovascular system, being able to antagonize catecholamine secretion and to reduce their positive inotropic effect, by stimulating the release of nitric oxide (NO) from endothelial cells. Moreover, Cst reduces ischemia/reperfusion (I/R) injury, improving post-ischemic cardiac function and cardiomyocyte survival. To define the cardioprotective signaling pathways activated by Cst (5 nM) we used isolated adult rat cardiomyocytes undergoing simulated I/R. We evaluated cell viability rate with propidium iodide labeling and mitochondrial membrane potential (MMP) with the fluorescent probe JC-1. The involvement of Akt, GSK3ß, eNOS and phospholamban (PLN) cascade was studied by immunofluorescence. The role of PI3K-Akt/NO/cGMP pathway was also investigated by using the pharmacological blockers wortmannin (Wm), L-NMMA and ODQ. Our experiments revealed that Cst increased cell viability rate by 65% and reduced cell contracture in I/R cardiomyocytes. Wm, L-NMMA and ODQ limited the protective effect of Cst. The protective outcome of Cst was related to its ability to maintain MMP and to increase AktSer473, GSK3ßSer9, PLNThr17 and eNOSSer1179 phosphorylation, while treatment with Wm abolished these effects. Thus, the present results show that Cst is able to exert a direct action on cardiomyocytes and give new insights into the molecular mechanisms involved in its protective effect, highlighting the PI3K/NO/cGMP pathway as the trigger and the MMP preservation as the end point of its action.


Assuntos
Cromogranina A/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromogranina A/uso terapêutico , Quinase 3 da Glicogênio Sintase/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
6.
Front Chem ; 2: 64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177680

RESUMO

Together with Chromogranin B and Secretogranins, Chromogranin A (CGA) is stored in secretory (chromaffin) granules of the diffuse neuroendocrine system and released with noradrenalin and adrenalin. Co-stored within the granule together with neuropeptideY, cardiac natriuretic peptide hormones, several prohormones and their proteolytic enzymes, CGA is a multifunctional protein and a major marker of the sympatho-adrenal neuroendocrine activity. Due to its partial processing to several biologically active peptides, CGA appears an important pro-hormone implicated in relevant modulatory actions on endocrine, cardiovascular, metabolic, and immune systems through both direct and indirect sympatho-adrenergic interactions. As a part of this scenario, we here illustrate the emerging role exerted by the full-length CGA and its three derived fragments, i.e., Vasostatin 1, catestatin and serpinin, in the control of circulatory homeostasis with particular emphasis on their cardio-vascular actions under both physiological and physio-pathological conditions. The Vasostatin 1- and catestatin-induced cardiodepressive influences are achieved through anti-beta-adrenergic-NO-cGMP signaling, while serpinin acts like beta1-adrenergic agonist through AD-cAMP-independent NO signaling. On the whole, these actions contribute to widen our knowledge regarding the sympatho-chromaffin control of the cardiovascular system and its highly integrated "whip-brake" networks.

7.
Biomed Res Int ; 2014: 783623, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136621

RESUMO

The chromogranin-A peptide catestatin modulates a wide range of processes, such as cardiovascular functions, innate immunity, inflammation, and metabolism. We recently found that the cardiac antiadrenergic action of catestatin requires a PI3K-dependent NO release from endothelial cells, although the receptor involved is yet to be identified. In the present work, based on the cationic properties of catestatin, we tested the hypothesis of its interaction with membrane heparan sulphate proteoglycans, resulting in the activation of a caveolae-dependent endocytosis. Experiments were performed on bovine aortic endothelial cells. Endocytotic vesicles trafficking was quantified by confocal microscopy using a water-soluble membrane dye; catestatin colocalization with heparan sulphate proteoglycans and caveolin 1 internalization were studied by fluorimetric measurements in live cells. Modulation of the catestatin-dependent eNOS activation was assessed by immunofluorescence and immunoblot analysis. Our results demonstrate that catestatin (5 nM) colocalizes with heparan sulphate proteoglycans and induces a remarkable increase in the caveolae-dependent endocytosis and caveolin 1 internalization, which were significantly reduced by both heparinase and wortmannin. Moreover, catestatin was unable to induce Ser(1179) eNOS phosphorylation after pretreatments with heparinase and methyl-ß-cyclodextrin. Taken together, these results highlight the obligatory role for proteoglycans and caveolae internalization in the catestatin-dependent eNOS activation in endothelial cells.


Assuntos
Cromogranina A/administração & dosagem , Endocitose/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Bovinos , Cavéolas/efeitos dos fármacos , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Cromogranina A/metabolismo , Cromogranina A/ultraestrutura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura
8.
PLoS One ; 9(8): e102536, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25099124

RESUMO

BACKGROUND: In the presence of comorbidities the effectiveness of many cardioprotective strategies is blunted. The goal of this study was to assess in a hypertensive rat model if the early reperfusion with anti-hypertensive and pro-angiogenic Chromogranin A-derived peptide, Catestatin (CST:hCgA352-372; CST-Post), protects the heart via Reperfusion-Injury-Salvage-Kinases (RISK)-pathway activation, limiting infarct-size and apoptosis, and promoting angiogenetic factors (e.g., hypoxia inducible factor, HIF-1α, and endothelial nitric oxide synthase, eNOS, expression). METHODS AND RESULTS: The effects of CST-Post on infarct-size, apoptosis and pro-angiogenetic factors were studied in isolated hearts of spontaneously hypertensive rats (SHR), which underwent the following protocols: (a) 30-min ischemia and 120-min reperfusion (I/R); (b) 30-min ischemia and 20-min reperfusion (I/R-short), both with and without CST-Post (75 nM for 20-min at the beginning of reperfusion). In unprotected Wistar-Kyoto hearts, used as normal counterpart, infarct-size resulted smaller than in SHR. CST-Post reduced significantly infarct-size and improved post-ischemic cardiac function in both strains. After 20-min reperfusion, CST-Post induced S-nitrosylation of calcium channels and phosphorylation of RISK-pathway in WKY and SHR hearts. Yet specific inhibitors of the RISK pathway blocked the CST-Post protective effects against infarct in the 120-min reperfusion groups. Moreover, apoptosis (evaluated by TUNEL, ARC and cleaved caspase) was reduced by CST-Post. Importantly, CST-Post increased expression of pro-angiogenetic factors (i.e., HIF-1α and eNOS expression) after two-hour reperfusion. CONCLUSIONS: CST-Post limits reperfusion damages and reverses the hypertension-induced increase of I/R susceptibility. Moreover, CST-Post triggers antiapoptotic and pro-angiogenetic factors suggesting that CST-Post can be used as an anti-maladaptive remodeling treatment.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Cardiomegalia/metabolismo , Cromogranina A/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Modelos Animais de Doenças , Feminino , Masculino , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Endogâmicos SHR
9.
Endocrinology ; 154(9): 3353-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23751870

RESUMO

Plasma chromogranin-A (CgA) concentrations correlate with severe cardiovascular diseases, whereas CgA-derived vasostatin-I and catestatin elicit cardiosuppression via an antiadrenergic/nitric oxide-cGMP mediated mechanism. Whether these phenomena are related is unknown. We here investigated whether and to what extent full-length CgA directly influences heart performance and may be subjected to stimulus-elicited intracardiac processing. Using normotensive and hypertensive rats, we evaluated the following: 1) direct myocardial and coronary effects of full-length CgA; 2) the signal-transduction pathway involved in its action mechanism; and 3) CgA intracardiac processing after ß-adrenergic [isoproterenol (Iso)]- and endothelin-1(ET-1)-dependent stimulation. The study was performed by using a Langendorff perfusion apparatus, Western blotting, affinity chromatography, and ELISA. We found that CgA (1-4 nM) dilated coronaries and induced negative inotropism and lusitropism, which disappeared at higher concentrations (10-16 nM). In spontaneously hypertensive rats (SHRs), negative inotropism and lusitropism were more potent than in young normotensive rats. We found that perfusion itself, Iso-, and endothelin-1 stimulation induced intracardiac CgA processing in low-molecular-weight fragments in young, Wistar Kyoto, and SHR rats. In young normotensive and adult hypertensive rats, CgA increased endothelial nitric oxide synthase phosphorylation and cGMP levels. Analysis of the perfusate from both Wistar rats and SHRs of untreated and treated (Iso) hearts revealed CgA absence. In conclusion, in normotensive and hypertensive rats, we evidenced the following: 1) full-length CgA directly affects myocardial and coronary function by AkT/nitric oxide synthase/nitric oxide/cGMP/protein kinase G pathway; and 2) the heart generates intracardiac CgA fragments in response to hemodynamic and excitatory challenges. For the first time at the cardiovascular level, our data provide a conceptual link between systemic and intracardiac actions of full-length CgA and its fragments, expanding the knowledge on the sympathochromaffin/CgA axis under normal and physiopathological conditions.


Assuntos
Alostase , Cromogranina A/metabolismo , Circulação Coronária , Vasos Coronários/metabolismo , Homeostase , Hipertensão/metabolismo , Miocárdio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiotônicos/farmacologia , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Endotelina-1/agonistas , Endotelina-1/metabolismo , Coração/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Técnicas In Vitro , Masculino , Contração Miocárdica/efeitos dos fármacos , Concentração Osmolar , Proteólise/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
10.
Pflugers Arch ; 465(7): 1031-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23319164

RESUMO

Catestatin (CST) limits myocardial ischaemia/reperfusion (I/R) injury with unknown mechanisms. Clearly phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) isoforms, including intra-mitochondrial PKCε, mitochondrial KATP (mitoKATP) channels and subsequent reactive oxygen species (ROS)-signalling play important roles in postconditioning cardioprotection, preventing mitochondrial permeability transition pore (mPTP) opening. Therefore, we studied the role of these extra- and intra-mitochondrial factors in CST-induced protection. Isolated rat hearts and H9c2 cells underwent I/R and oxidative stress, respectively. In isolated hearts CST (75nM, CST-Post) given in early-reperfusion significantly reduced infarct size, limited post-ischaemic contracture, and improved recovery of developed left ventricular pressure. PI3K inhibitor, LY-294002 (LY), large spectrum PKC inhibitor, Chelerythrine (CHE), specific PKCε inhibitor (εV1-2), mitoKATP channel blocker, 5-Hydroxydecanoate (5HD) or ROS scavenger, 2-mercaptopropionylglycine (MPG) abolished the infarct-sparing effect of CST. Notably the CST-induced contracture limitation was maintained during co-infusion of 5HD, MPG or εV1-2, but it was lost during co-infusion of LY or CHE. In H9c2 cells challenged with H2O2, mitochondrial depolarization (an index of mPTP opening studied with JC1-probe) was drastically limited by CST (75nM). Our results suggest that the protective signalling pathway activated by CST includes mitoKATP channels, ROS signalling and prevention of mPTP opening, with a central role for upstream PI3K/Akt and PKCs. In fact, all inhibitors completely abolished CST-infarct-sparing effect. Since CST-anti-contracture effect cannot be explained by intra-mitochondrial mechanisms (PKCε activation and mitoKATP channel opening) or ROS signalling, it is proposed that these downstream signals are part of a reverberant loop which re-activates upstream PKCs, which therefore play a pivotal role in CST-induced protection.


Assuntos
Cardiotônicos/farmacologia , Cromogranina A/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais , Animais , Cardiotônicos/uso terapêutico , Linhagem Celular , Cromogranina A/uso terapêutico , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Canais de Potássio/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
12.
J Nutr Biochem ; 24(7): 1221-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23266283

RESUMO

A moderate red wine consumption and a colored fruit-rich diet protect the cardiovascular system, thanks to the presence of several polyphenols. Malvidin-3-0-glucoside (malvidin), an anthocyanidine belonging to polyphenols, is highly present in red grape skin and red wine. Its biological activity is poorly characterized, although a role in tumor cell inhibition has been found. To analyze whether and to which extent, like other food-derived polyphenols, malvidin affects the cardiovascular function, in this study, we have performed a quantitative analysis by high-performance liquid chromatography of polyphenolic content of red grape skins extract, showing that it contains a high malvidin amount (63.93 ±12.50 mg/g of fresh grape skin). By using the isolated and Langendorff perfused rat heart, we found that the increasing doses (1-1000 ng/ml) of the extract induced positive inotropic and negative lusitropic effects associated with coronary dilation. On the same cardiac preparations, we observed that malvidin (10(-10)-10(-6) mol/L) elicited negative inotropism and lusitropism and coronary dilation. Analysis of mechanism of action revealed that malvidin-dependent cardiac effects require the activation of the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO)/cGMP/PKG pathway and are associated with increased intracellular cGMP and the phosphorylation of endothelial NO synthase (eNOS), PI3K-AKT, ERK1/2, and GSK-3ß. AKT and eNOS phosphorylation was confirmed in human umbilical vein endothelial cell. We also found that malvidin act as a postconditioning agent, being able to elicit cardioprotection against ischemia/reperfusion damages. Our results show the cardioactivity of polyphenols-rich red grape extracts and indicate malvidin as a new cardioprotective principle. This is of relevance not only for a better clarification of the beneficial cardiovascular effects of food-derived polyphenols but also for nutraceutical research.


Assuntos
Antocianinas/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Vinho/análise , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
13.
Am J Physiol Regul Integr Comp Physiol ; 302(11): R1271-81, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492815

RESUMO

Evidence from both mammalian and nonmammalian vertebrates indicates that intracardiac nitric oxide (NO) facilitates myocardial relaxation, ventricular diastolic distensibility, and, consequently, the Frank-Starling response, i.e., the preload-induced increase of cardiac output. Since nitrite ion (NO(2)(-)), the major storage pool of bioactive NO, recently emerged as a cardioprotective endogenous modulator, we explored its influence on the Frank-Starling response in eel, frog, and rat hearts, used as paradigms of fish, amphibians, and mammals, respectively. We demonstrated that, like NO, exogenous nitrite improves the Frank-Starling response in all species, as indicated by an increase of stroke volume and stroke work (eel and frog) and of left ventricular (LV) pressure and LVdP/dt max (rat), used as indexes of inotropism. Unlike in frog and rat, in eel, the positive influence of nitrite appeared to be dependent on NO synthase inhibition. In all species, the effect was sensitive to NO scavengers, independent on nitroxyl anion, and mediated by a cGMP/PKG-dependent pathway. Moreover, the nitrite treatment increased S-nitrosylation of lower-molecular-weight proteins in cytosolic and membrane fractions. These results suggest that nitrite acts as a physiological source of NO, modulating through different species-specific mechanisms, the stretch-induced intrinsic regulation of the vertebrate heart.


Assuntos
Débito Cardíaco/efeitos dos fármacos , GMP Cíclico/metabolismo , Coração/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Nitritos/farmacologia , Volume Sistólico/efeitos dos fármacos , Anguilla , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Coração/efeitos dos fármacos , Masculino , Nitritos/metabolismo , Rana esculenta , Ratos , Ratos Wistar
14.
FASEB J ; 26(7): 2888-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22459152

RESUMO

Three forms of serpinin peptides, serpinin (Ala26Leu), pyroglutaminated (pGlu)-serpinin (pGlu23Leu), and serpinin-Arg-Arg-Gly (Ala29Gly), are derived from cleavage at pairs of basic residues in the highly conserved C terminus of chromogranin A (CgA). Serpinin induces PN-1 expression in neuroendocrine cells to up-regulate granule biogenesis via a cAMP-protein kinase A-Sp1 pathway, while pGlu-serpinin inhibits cell death. The aim of this study was to test the hypothesis that serpinin peptides are produced in the heart and act as novel ß-adrenergic-like cardiac modulators. We detected serpinin peptides in the rat heart by HPLC and ELISA methods. The peptides included predominantly Ala29Gly and pGlu-serpinin and a small amount of serpinin. Using the Langendorff perfused rat heart to evaluate the hemodynamic changes, we found that serpinin and pGlu-serpinin exert dose-dependent positive inotropic and lusitropic effects at 11-165 nM, within the first 5 min after administration. The pGlu-serpinin-induced contractility is more potent than that of serpinin, starting from 1 nM. Using the isolated rat papillary muscle preparation to measure contractility in terms of tension development and muscle length, we further corroborated the pGlu-serpinin-induced positive inotropism. Ala29Gly was unable to affect myocardial performance. Both pGlu-serpinin and serpinin act through a ß1-adrenergic receptor/adenylate cyclase/cAMP/PKA pathway, indicating that, contrary to the ß-blocking profile of the other CgA-derived cardiosuppressive peptides, vasostatin-1 and catestatin, these two C-terminal peptides act as ß-adrenergic-like agonists. In cardiac tissue extracts, pGlu-serpinin increased intracellular cAMP levels and phosphorylation of phospholamban (PLN)Ser16, ERK1/2, and GSK-3ß. Serpinin and pGlu-serpinin peptides emerge as novel ß-adrenergic inotropic and lusitropic modulators, suggesting that CgA and the other derived cardioactive peptides can play a key role in how the myocardium orchestrates its complex response to sympathochromaffin stimulation.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Cromogranina A/química , Cromogranina A/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cromogranina A/genética , Cromogranina A/farmacologia , Técnicas In Vitro , Masculino , Dados de Sequência Molecular , Contração Miocárdica/efeitos dos fármacos , Miocárdio/química , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar
15.
J Mol Neurosci ; 48(2): 347-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22388654

RESUMO

Chromogranin A (CgA) is a member of the granins, a family of acidic proteins found in abundance in (neuro)endocrine cells (e.g., in chromaffin cells) and in some tumors. Like other granins, CgA has a granulogenic role in secretory granule biogenesis and is stored in these organelles. CgA is partially processed differentially in various cell types to yield biologically active peptides, such as vasostatin, pancreastatin, catestatin, and serpinins. In this review, we describe the roles of CgA and several of its derived peptides. CgA, which is elevated in the blood of cancer patients, inhibits angiogenesis and exerts protective effects on the endothelial barrier function in tumors, thus affecting response to chemotherapy. Recent studies indicate that the serpinins promote cell survival and myocardial contractility and relaxation. Other peptides such as pancreastatin were found to have significant effects on inhibition of glucose-stimulated insulin secretion and glucose up-take, induction of glycogenolysis in hepatocytes, and inhibition of lipogenesis. In contrast, catestatin has opposite effects to that of pancreastatin in glucose metabolism and lipogenesis. Catestatin appears to also play a significant role in cardiac function, blood pressure regulation, and mutations in the catestatin domain of the CgA gene are associated with hypertension in humans.


Assuntos
Células Cromafins/fisiologia , Cromogranina A/fisiologia , Neoplasias/metabolismo , Fragmentos de Peptídeos/fisiologia , Células Cromafins/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Neoplasias/patologia , Neoplasias/fisiopatologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-22314020

RESUMO

Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.


Assuntos
Adaptação Fisiológica , Sulfeto de Hidrogênio/metabolismo , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Animais , Humanos , Hipóxia/fisiopatologia , Óxido Nítrico Sintase/fisiologia , Transdução de Sinais
17.
Am J Physiol Heart Circ Physiol ; 302(2): H431-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22058158

RESUMO

The chromogranin A (CHGA)-derived peptide catestatin (CST: hCHGA(352-372)) is a noncompetitive catecholamine-release inhibitor that exerts vasodilator, antihypertensive, and cardiosuppressive actions. We have shown that CST directly influences the basal performance of the vertebrate heart where CST dose dependently induced a nitric oxide-cGMP-dependent cardiosuppression and counteracted the effects of adrenergic stimulation through a noncompetitive antagonism. Here, we sought to determine the specific intracardiac signaling activated by CST in the rat heart. Physiological analyses performed on isolated, Langendorff-perfused cardiac preparations revealed that CST-induced negative inotropism and lusitropism involve ß(2)/ß(3)-adrenergic receptors (ß(2)/ß(3)-AR), showing a higher affinity for ß(2)-AR. Interaction with ß(2)-AR activated phosphatidylinositol 3-kinase/endothelial nitric oxide synthase (eNOS), increased cGMP levels, and induced activation of phosphodiesterases type 2 (PDE2), which was found to be involved in the antiadrenergic action of CST as evidenced by the decreased cAMP levels. CST-dependent negative cardiomodulation was abolished by functional denudation of the endothelium with Triton. CST also increased the eNOS expression in cardiac tissue and human umbilical vein endothelial cells. cells, confirming the involvement of the vascular endothelium. In ventricular extracts, CST increased S-nitrosylation of both phospholamban and ß-arrestin, suggesting an additional mechanism for intracellular calcium modulation and ß-adrenergic responsiveness. We conclude that PDE2 and S-nitrosylation play crucial roles in the CST regulation of cardiac function. Our results are of importance in relation to the putative application of CST as a cardioprotective agent against stress, including excessive sympathochromaffin overactivation.


Assuntos
Anti-Hipertensivos/farmacologia , Fármacos Cardiovasculares/farmacologia , Cromogranina A/farmacologia , Exonucleases/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/fisiologia , Animais , Arrestinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases , Ratos , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas
18.
Nitric Oxide ; 25(1): 1-10, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21575737

RESUMO

During early ectotherm vertebrate evolution the heart was redesigned as a high pressure pump adapted to perfuse larger body sizes. To compensate the consequent higher organ complexity and heterogeneity (ventricular myoarchitecture and blood supply), conceivably the three principal cardiac cell components, the endocardium, the contractile myocardium and the epicardium recruited and diversified the cardiac NOS system for functioning not only as a major modulator, but also as a spatio-temporal integrator of heart function. In the context of NOS isoform evolution, we will use fish and amphibian paradigms to illustrate major aspects of cardiac spatial and temporal integration achieved by the NOS/NO systems. This may reveal a primordial cardiac NOS/NO function, allocating it in a wider biological framework than so far envisioned.


Assuntos
Anfíbios/metabolismo , Evolução Biológica , Peixes/metabolismo , Miocárdio/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais
19.
Cardiovasc Res ; 91(4): 617-24, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21543385

RESUMO

AIMS: Catestatin (CST) is a chromogranin A (CgA)-derived peptide (hCgA352-372) with three identified human variants (G364S/P370L/R374Q-CST) that show differential potencies towards the inhibition of catecholamine release. Although CST affects several cardiovascular parameters, the mechanisms underlying CST action in the heart have remained elusive. Therefore, we sought to determine the mechanism of action of CST and its variants on ventricular myocardium and endothelial cells. METHODS AND RESULTS: Contractile force and Ca(2+) transients were measured, respectively, on rat papillary muscles and isolated cardiomyocytes (CC) under basal conditions and after ß-adrenergic stimulation. Nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) phosphorylation (P(Ser1179)eNOS) were studied in bovine aortic endothelial (BAE-1) cells. Under basal conditions, wild-type CST (WT-CST, 10-50 nM) transiently enhanced myocardial contractility. CST variants (G364S and P370L) exerted a comparable positive inotropic effect. The H(1) histamine receptor antagonist mepyramine abolished the increase of contractile force induced by WT-CST. Moreover, WT-CST dose-dependently (5-50 nM) reduced the effect of ß-adrenergic stimulation. This anti-adrenergic effect was not mediated by a direct action on CC, but involved a PI3K-dependent NO release from endocardial endothelial cells. Indeed, CST induced a wortmannin-sensitive, Ca(2+)-independent increase in NO production and eNOS phosphorylation on BAE-1 cells. While the anti-adrenergic and NO release effects of P370L-CST were comparable with those of WT-CST, the G364S variant was ineffective on the same parameters. CONCLUSION: Our results suggest that the anti-adrenergic action of CST depends on the endothelial PI3K-Akt-eNOS pathway and that its structural alterations entail functional features that correlate with the different anti-hypertensive potential described in humans.


Assuntos
Antagonistas Adrenérgicos/farmacologia , Cromogranina A/farmacologia , Coração/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/fisiologia , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Cálcio/metabolismo , Bovinos , Células Cultivadas , Imunofluorescência , Miocárdio/metabolismo , Óxido Nítrico/biossíntese , Músculos Papilares/efeitos dos fármacos , Ratos
20.
Antioxid Redox Signal ; 14(5): 851-62, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20518703

RESUMO

Extreme changes in environmental oxygen (O(2)) is a constant issue that ectotherm vertebrates have to deal with, whereas for endotherms severe hypoxia and reoxygenation are usually related to a pathological state. The physiological mechanisms of hypoxia tolerance in ectotherms are based on biochemical evolutionary adaptations and may serve in understanding endogenous phenomena of protection against diminished O(2) availability in the heart. In this review, we will, therefore, describe different species of fish, amphibian, and reptile that are well-known examples of cardiac tolerance to O(2) deficiency. We will then focus on a subset of Antarctic fishes which have lost physiological transporters of O(2) such as hemoglobin and myoglobin (Mb) and that have reached a surprising adaptation to this extreme environment. Moreover, we will concentrate on the cardio-protective effects of the interaction between Mb and nitric oxide with particular emphasis on the nitrite-reductase function of Mb. Finally, the role of a recently described gasotransmitter, the free diffusible hydrogen sulfide, will be briefly discussed in relation to hypoxia. This evolutionary and comparative perspective may provide a useful and heuristic stimulus for medically oriented research aimed at elucidating the environmental and genetic risk factors underlying the vulnerability of the human heart.


Assuntos
Evolução Biológica , Coração/fisiologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Animais , Coração/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Nitritos/metabolismo , Nitritos/farmacologia , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA