Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177463

RESUMO

We introduce a novel piezoelectric stepper motor featuring high compactness, rigidity, and any direction operability. Here, not only is the structure of high novelty but also the working principle very simple. The piezo stacks unit is sandwiched between two spring finger pieces, with almost equal clamping forces applied between the top of the piezo stacks' unit and the spring finger piece. Applying individual driving signals to each of the five piezo stack pairs, causing deformation one by one in the same direction, followed by simultaneous recovery in the reverse direction, enables movement of the frame part. The optimized clamping force of the piezoelectric stack units and spring fingers ensures maximum output force. The motor's operational capability at low threshold voltages, specifically 8 V for downward movement and 10 V for upward movement, confirmed its efficacy in both vertical and horizontal directions. The motor's operational capability at a low threshold voltage of 10 V confirmed its efficacy in both vertical and horizontal directions. At room temperature, step size ranges from 0.3 to 7.4 µm at 20 Hz frequency and varying driving voltage from 10 to 180 V. It has a maximum travel range of about 5 mm and can lift a maximum load of 220 g in an upward direction, so the maximum output force generated by this motor is 2.2 N. The compact and rigid design is capable of building an atomically resolved scanning probe microscope, and its working ability has the potential to use the cleavage of different types of samples in limited space environments, such as the small-bore superconducting magnet and low temperature.

2.
Heliyon ; 10(15): e34422, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144962

RESUMO

In real life situation, it is often difficult to judge the relative importance of different parameters being considered for evaluating some alternatives. In the context of fuzzy sets, it is a situation where it is difficult to define precise membership grades for attribute values. Here we require more generalized type of fuzzy sets which have a greater representational power than ordinary fuzzy sets. For this purpose we use "interval type-2 trapezoidal fuzzy preference relations (IT2TrFPRs)" in this article as a generalization of fuzzy preference relations and consider the environment discussed above, where there is no information on priority weights. A collective decision matrix will be constructed on the basis of hybrid averages using weighted averaging and signed distance based OWA operation. Then a least deviation model will be employed in order to determine the priority weight vectors. Finally, the alternatives will be ranked on the basis of weighted normalized signed distance of each alternative from the ideal solution. Moreover, a real life example of location selection is illustrated to elaborate the effectiveness of the proposed scheme.

3.
Ultramicroscopy ; 263: 113983, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38749338

RESUMO

Scanning tunneling microscope (STM) is a renowned scientific tool for obtaining high-resolution atomic images of materials. Herein, we present an innovative design of the scanning unit with a compact yet powerful inertial piezoelectric motor inspired by the Spider Drive motor principle. The scanning unit mainly consists of a small 9 mm long piezoelectric tube scanner (PTS), one end of which is coaxially connected to the main sapphire body of the STM. Of particular emphasis in this design is the piezoelectric shaft (PS), constructed from piezoelectric material instead of conventional metallic or zirconium materials. The PS is a rectangular piezoelectric stack composed of two piezoelectric plates, which are elastically clamped on the inner wall of the PTS via a spring strip. The PTS and PS expand and contract independently with each other to improve the inertial force and reduce the threshold voltage. To ensure the stability of the PS and balance the stepping performance of the inertial motor, a counterweight, and a matching conical spring are fixed at the tail of the PS. This innovative design allows for the assessment of scanning unit performance by applying a driving signal, threshold voltage is 50 V at room temperature. Step sizes vary from 0.1 to 1 µm by changing the driving signal at room temperature. Furthermore, we successfully obtained atomic-resolution images of a highly oriented pyrolytic graphite (HOPG) sample and low drift rates of 23.4 pm/min and 34.6 pm/min in X-Y plane and Z direction, respectively, under ambient conditions. This small, compact STM unit has the potential for the development of a rotatable STM for use in cryogen-free magnets, and superconducting magnets.

4.
J Microsc ; 294(1): 26-35, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224001

RESUMO

We present the design and performance of a novel scanning tunnelling microscope (STM) operating in a cryogen-free superconducting magnet. Our home-built STM head is compact (51.5 mm long and 20 mm in diameter) and has a single arm that provides complete openness in the scanning area between the tip and sample. The STM head consists of two piezoelectric tubes (PTs), a piezoelectric scanning tube (PST) mounted on a well-polished zirconia shaft, and a large PT housed in a sapphire tube called the motor tube. The main body of the STM head is made of tantalum. In this design, we fixed the sapphire tube to the frame with screws so that the tube's position can be changed quickly. To analyse the stiffness of the STM head unit, we identified the lowest eigenfrequencies with 3 and 4 kHz in the bending modes, 8 kHz in a torsional mode, and 9 kHz in a longitudinal mode by finite element analysis, and also measured the low drift rates in the X-Y plane and in the Z direction. The high performance of the home-built STM was demonstrated by images of the hexagonal graphite lattice at 300 K and in a sweeping magnetic field from 0 T to 9 T. Our results confirm the high stability, vibration resistance, insensitivity to high magnetic fields and the application potential of our newly developed STM for the investigation of low-frequency systems with high static support stiffness in physics, chemistry, material and biological sciences.

5.
Heliyon ; 9(9): e19969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809988

RESUMO

Weight determining of attributes is an important factor in decision support systems since it corresponds to the relative importance of each criteria which is necessary to be determined since all the attributes aren't equally important. The aim of this paper is to put forward a method for multi Criteria decision making (MCDM) problems based on three trapezoidal fuzzy numbers under completely unknown weights environment. Based on the idea that the attribute with a larger deviation value among alternatives should be assigned a larger weight, an optimization model based on maximizing deviation method is established. F-OWA is considered to be vastly superior from the existing operators which usually take into account only the relative significance of decision makers. F-OWA operator considers not only the ratings of attribute values but also their ordered position that is it not only signifies the decision makers but also values the individual assessments. We utilize fuzzy ordered weighted averaging (F-OWA) operator to compute the collective overall preference value of each alternative and select the most desirable one according to their expected score values. The presented method is more generalized since we have used TTFNs, which are more effective in capturing uncertainty than IT2FS, just like triangular fuzzy numbers have a better representational power than simple interval numbers. Moreover, an illustrative example is given for the justification of the proposed technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA