Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Microbes Infect ; 26(5-6): 105354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754811

RESUMO

CONTEXT: The changes in host membrane phospholipids are crucial in airway infection pathogenesis. Phospholipase A2 hydrolyzes host cell membranes, producing lyso-phospholipids and free fatty acids, including arachidonic acid (AA), which contributes significantly to lung inflammation. AIM: Follow these changes and their evolution from day 1, day 3 to day 7 in airway aspirates of 89 patients with COVID-19-associated acute respiratory distress syndrome and examine whether they correlate with the severity of the disease. The patients were recruited in three French intensive care units. The analysis was conducted from admission to the intensive care unit until the end of the first week of mechanical ventilation. RESULTS: In the airway aspirates, we found significant increases in the levels of host cell phospholipids, including phosphatidyl-serine and phosphatidyl-ethanolamine, and their corresponding lyso-phospholipids. This was accompanied by increased levels of AA and its inflammatory metabolite prostaglandin E2 (PGE2). Additionally, enhanced levels of ceramides, sphingomyelin, and free cholesterol were observed in these aspirates. These lipids are known to be involved in cell death and/or apoptosis, whereas free cholesterol plays a role in virus entry and replication in host cells. However, there were no significant changes in the levels of dipalmitoyl-phosphatidylcholine, the major surfactant phospholipid. A correlation analysis revealed an association between mortality risk and levels of AA and PGE2, as well as host cell phospholipids. CONCLUSION: Our findings indicate a correlation between heightened cellular phospholipid modifications and variations in AA and PGE2 with the severity of the disease in patients. Nevertheless, there is no indication of surfactant alteration in the initial phases of the illness.


Assuntos
COVID-19 , Fosfolipídeos , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Fosfolipídeos/metabolismo , Fosfolipídeos/análise , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Unidades de Terapia Intensiva , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Pneumonia Viral/patologia , Ácido Araquidônico/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , França , Betacoronavirus , Dinoprostona/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , Pandemias , Adulto , Respiração Artificial , Ceramidas/metabolismo
2.
Sci Rep ; 14(1): 6297, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491095

RESUMO

Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.


Assuntos
Proteínas de Bactérias , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Peixe-Zebra/metabolismo , Infecções por Pseudomonas/genética , Fagocitose , Fagossomos/metabolismo , Pseudomonas aeruginosa/metabolismo
3.
Toxins (Basel) ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37505708

RESUMO

Host molecules with antimicrobial properties belong to a large family of mediators including type-IIA secreted phospholipase A2 (sPLA2-IIA). The latter is a potent bactericidal agent with high selectivity against Gram-positive bacteria, but it may also play a role in modulating the host inflammatory response. However, several pathogen-associated molecular patterns (PAMPs) or toxins produced by pathogenic bacteria can modulate the levels of sPLA2-IIA by either inducing or inhibiting its expression in host cells. Thus, the final sPLA2-IIA concentration during the infection process is determined by the orchestration between the levels of toxins that stimulate and those that downregulate the expression of this enzyme. The stimulation of sPLA2-IIA expression is a process that participates in the clearance of invading bacteria, while inhibition of this expression highlights a mechanism by which certain bacteria can subvert the immune response and invade the host. Here, we will review the major functions of sPLA2-IIA in the airways and the role of bacterial toxins in modulating the expression of this enzyme. We will also summarize the major mechanisms involved in this modulation and the potential consequences for the pulmonary host response to bacterial infection.


Assuntos
Toxinas Bacterianas , Fosfolipases A2 Secretórias , Antibacterianos/farmacologia , Fosfolipases A2 do Grupo II
4.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L411-L418, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489844

RESUMO

Surfactant protein-D (SP-D) is a hydrophilic protein with multiple crucial anti-inflammatory and immunological functions. It might play a role in the development and course of pulmonary infections, acute respiratory distress syndrome, and other respiratory disorders. Only few small neonatal studies have investigated SP-D: we aimed to investigate the links between this protein, measured in the first hours of life in extremely preterm neonates, and clinical outcomes, as well its relationship with pulmonary secretory phospholipase A2 (sPLA2). Bronchoalveolar lavage fluids were obtained within the first 3 h of life. SP-D and sPLA2 were measured with ELISA and radioactive method, respectively; epithelial lining fluid concentrations were estimated with urea ratio. Clinical data were prospectively collected. One hundred extremely preterm neonates were nonconsecutively studied. SP-D was significantly raised with increasing gestational age (24-26 wk: 68 [0-1,694], 27 or 28 wk: 286 [0-1,328], 29 or 30 wk: 1,401 [405-2,429] ng/mL, overall P = 0.03). SP-D was significantly higher in cases with clinical chorioamnionitis with fetal involvement (1,138 [68-3,336]) than in those without clinical chorioamnionitis with fetal involvement (0 [0-900] ng/mL, P < 0.001). SP-D was lower in infants with bronchopulmonary dysplasia (BPD) (251 [0-1,550 ng/mL]) compared with those without bronchopulmonary dysplasia (BPD) or who died before its diagnosis (977 [124-5,534 ng/mL], P = 0.05) and this was also significant upon multivariate analysis [odds ration (OR): 0.997 (0.994-0.999), P = 0.024], particularly in neonates between 27- and 28-wk gestation. SP-D significantly correlated with the duration of hospital stay (ρ = -0.283, P = 0.002), invasive ventilation (ρ = -0.544, P = 0.001), and total sPLA2 activity (ρ = 0.528, P = 0.008). These findings help understanding the role of SP-D early in life and support further investigation about the role of SP-D in developing BPD.NEW & NOTEWORTHY Surfactant protein-D increases with gestational age and is inversely associated with BPD development. These results have been obtained in the first hours of life of extremely preterm neonates with optimal perinatal care.


Assuntos
Displasia Broncopulmonar , Corioamnionite , Fosfolipases A2 Secretórias , Síndrome do Desconforto Respiratório do Recém-Nascido , Recém-Nascido , Lactente , Gravidez , Feminino , Humanos , Proteína D Associada a Surfactante Pulmonar , Líquido da Lavagem Broncoalveolar , Lactente Extremamente Prematuro , Fosfolipases A2 Secretórias/metabolismo , Tensoativos
5.
Drugs ; 83(1): 1-36, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508116

RESUMO

Severe manifestations of COVID-19 consist of acute respiratory distress syndrome due to an initially local reaction leading to a systemic inflammatory response that results in hypoxia. Many therapeutic approaches have been attempted to reduce the clinical consequences of an excessive immune response to viral infection. To date, systemic corticosteroid therapy is still the most effective intervention. More recently, new hope has emerged with the use of interleukin (IL)-6 receptor inhibitors (tocilizumab and sarilumab). However, the great heterogeneity of the methodology and results of published studies obfuscate the true value of this treatment, leading to a confusing synthesis in recent meta-analyses, and the persistence of doubts in terms of patient groups and the appropriate time to treat. Moreover, their effects on the anti-infectious or pro-healing response are still poorly studied. This review aims to clarify the potential role of IL-6 receptor inhibitors in the treatment of severe forms of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Receptores de Interleucina-6
6.
Front Cell Infect Microbiol ; 12: 1064010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519135

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that can cause critical cellular damage and subvert the immune response to promote its survival. Among the numerous virulence factors of P. aeruginosa, the type III secretion system (T3SS) is involved in host cell pathogenicity. Using a needle-like structure, T3SS detects eukaryotic cells and injects toxins directly into their cytosol, thus highlighting its ability to interfere with the host immune response. In this mini-review, we discuss how the T3SS and bacterial effectors secreted by this pathway not only activate the immune response but can also manipulate it to promote the establishment of P. aeruginosa infections.


Assuntos
Infecções por Pseudomonas , Sistemas de Secreção Tipo III , Humanos , Sistemas de Secreção Tipo III/metabolismo , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Fatores de Virulência/metabolismo , Imunidade , Infecções por Pseudomonas/microbiologia
7.
J Innate Immun ; : 1-18, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473432

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been classified as a high priority pathogen by the World Health Organization underlining the high demand for new therapeutics to treat infections. Human group IIA-secreted phospholipase A2 (hGIIA) is among the most potent bactericidal proteins against Gram-positive bacteria, including S. aureus. To determine hGIIA-resistance mechanisms of MRSA, we screened the Nebraska Transposon Mutant Library using a sublethal concentration of recombinant hGIIA. We identified and confirmed the role of lspA, encoding the lipoprotein signal peptidase LspA, as a new hGIIA resistance gene in both in vitro assays and an infection model in hGIIA-transgenic mice. Increased susceptibility of the lspA mutant was associated with enhanced activity of hGIIA on the cell membrane. Moreover, lspA deletion increased susceptibility to daptomycin, a last-resort antibiotic to treat MRSA infections. MRSA wild type could be sensitized to hGIIA and daptomycin killing through exposure to LspA-specific inhibitors globomycin and myxovirescin A1. Analysis of >26,000 S. aureus genomes showed that LspA is highly sequence-conserved, suggesting universal application of LspA inhibition. The role of LspA in hGIIA resistance was not restricted to MRSA since Streptococcus mutans and Enterococcus faecalis were also more hGIIA-susceptible after lspA deletion or LspA inhibition, respectively. Overall, our data suggest that pharmacological interference with LspA may disarm Gram-positive pathogens, including MRSA, to enhance clearance by innate host defense molecules and clinically applied antibiotics.

8.
mBio ; 13(5): e0215422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36129311

RESUMO

Diverse bacterial volatile compounds alter bacterial stress responses and physiology, but their contribution to population dynamics in polymicrobial communities is not well known. In this study, we showed that airborne volatile hydrogen cyanide (HCN) produced by a wide range of Pseudomonas aeruginosa clinical strains leads to at-a-distance in vitro inhibition of the growth of a wide array of Staphylococcus aureus strains. We determined that low-oxygen environments not only enhance P. aeruginosa HCN production but also increase S. aureus sensitivity to HCN, which impacts P. aeruginosa-S. aureus competition in microaerobic in vitro mixed biofilms as well as in an in vitro cystic fibrosis lung sputum medium. Consistently, we demonstrated that production of HCN by P. aeruginosa controls S. aureus growth in a mouse model of airways coinfected by P. aeruginosa and S. aureus. Our study therefore demonstrates that P. aeruginosa HCN contributes to local and distant airborne competition against S. aureus and potentially other HCN-sensitive bacteria in contexts relevant to cystic fibrosis and other polymicrobial infectious diseases. IMPORTANCE Airborne volatile compounds produced by bacteria are often only considered attractive or repulsive scents, but they also directly contribute to bacterial physiology. Here, we showed that volatile hydrogen cyanide (HCN) released by a wide range of Pseudomonas aeruginosa strains controls Staphylococcus aureus growth in low-oxygen in vitro biofilms or aggregates and in vivo lung environments. These results are of pathophysiological relevance, since lungs of cystic fibrosis patients are known to present microaerobic areas and to be commonly associated with the presence of S. aureus and P. aeruginosa in polymicrobial communities. Our study therefore provides insights into how a bacterial volatile compound can contribute to the exclusion of S. aureus and other HCN-sensitive competitors from P. aeruginosa ecological niches. It opens new perspectives for the management or monitoring of P. aeruginosa infections in lower-lung airway infections and other polymicrobial disease contexts.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Infecções Estafilocócicas , Animais , Camundongos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus , Cianeto de Hidrogênio , Fibrose Cística/microbiologia , Biofilmes , Infecções Estafilocócicas/microbiologia , Pulmão , Oxigênio , Infecções por Pseudomonas/microbiologia
9.
Front Immunol ; 13: 931027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860265

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.


Assuntos
Infecções por Pseudomonas , Infecções Respiratórias , Humanos , Lipídeos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Infecções Respiratórias/complicações , Fatores de Virulência
10.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L121-L128, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762614

RESUMO

Secretory phospholipase A2 (sPLA2) regulates the first step of inflammatory cascade and is involved in several pathological processes. sPLA2 also plays a role in preterm labor and parturition, since they are triggered by inflammatory mediators such as prostaglandins. Interestingly, chorioamnionitis (i.e., the presence of intrauterine inflammation) is also often associated with preterm birth. We aimed to verify if chorioamnionitis with fetal involvement modifies sPLA2 activity and expression profile in mothers and neonates delivered prematurely. We collected maternal plasma and amniotic fluid, as well as bronchoalveolar lavage fluid from preterm neonates born to mothers with or without clinical chorioamnionitis with fetal involvement. We measured concentrations of sPLA2 subtype-IIA and -IB, total enzyme activity, and proteins. Urea ratio was used to obtain epithelial lining fluid concentrations. Enzyme activity measured in maternal plasma (P < 0.001) and amniotic fluid (P < 0.001) was higher in chorioamnionitis cases than in controls. This was mainly due to the increased production of sPLA2-IIA, as the subtype -IB was present in a smaller amount and was similar between the two groups; sPLA2-IIA was increased in epithelial lining fluid (P = 0.045) or increased, although without statistical significance, in maternal plasma (P = 0.06) and amniotic fluid (P = 0.08) of chorioamnionitis cases. Cytokines that are known to increase sPLA2-IIA expression (TNF-α and IL-1ß) or whose expression was increased by sPLA2-IIA (IL-8) were higher in histologically confirmed chorioamnionitis [TNF-α (P = 0.028), IL-1ß (P < 0.001), and IL-8 (P = 0.038)]. These data represent the basis for future studies on sPLA2-IIA inhibition to prevent deleterious consequences of chorioamnionitis and preterm birth.


Assuntos
Corioamnionite , Fosfolipases A2 Secretórias , Nascimento Prematuro , Corioamnionite/metabolismo , Feminino , Humanos , Recém-Nascido , Interleucina-8 , Fosfolipases A2 Secretórias/metabolismo , Gravidez , Fator de Necrose Tumoral alfa
11.
Cell Rep ; 39(11): 110923, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705035

RESUMO

The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol. PRDX6 is a lipid-peroxidation repair enzyme with phospholipase A2 (PLA2) activity. Inhibition of PRDX6 with a PLA2 inhibitor, Darapladib, increases lipid-peroxidation damage in the parasite and disrupts transport of hemoglobin-containing vesicles to the food vacuole, causing parasite death. Furthermore, inhibition of PRDX6 synergistically reduces the survival of artemisinin-resistant parasites following co-treatment of parasite cultures with artemisinin and Darapladib. Thus, PRDX6 is a host-derived drug target for development of antimalarial drugs that could help overcome artemisinin resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Peroxirredoxina VI , Animais , Antimaláricos/farmacologia , Artemisininas/metabolismo , Artemisininas/farmacologia , Benzaldeídos/farmacologia , Resistência a Medicamentos , Hemoglobinas/metabolismo , Humanos , Lipídeos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Oximas/farmacologia , Peroxirredoxina VI/imunologia , Peroxirredoxina VI/metabolismo , Plasmodium falciparum
12.
Front Immunol ; 13: 824746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392090

RESUMO

The origin of the impaired CD4 T-cell response and immunodeficiency of HIV-infected patients is still only partially understood. We recently demonstrated that PLA2G1B phospholipase synergizes with the HIV gp41 envelope protein in HIV viremic plasma to induce large abnormal membrane microdomains (aMMDs) that trap and inactivate physiological receptors, such as those for IL-7. However, the mechanism of regulation of PLA2G1B activity by the cofactor gp41 is not known. Here, we developed an assay to directly follow PLA2G1B enzymatic activity on CD4 T-cell membranes. We demonstrated that gp41 directly binds to PLA2G1B and increases PLA2G1B enzymatic activity on CD4 membrane. Furthermore, we show that the conserved 3S sequence of gp41, known to bind to the innate sensor gC1qR, increases PLA2G1B activity in a gC1qR-dependent manner using gC1qR KO cells. The critical role of the 3S motif and gC1qR in the inhibition of CD4 T-cell function by the PLA2G1B/cofactor system in HIV-infected patients led us to screen additional microbial proteins for 3S-like motifs and to study other proteins known to bind to the gC1qR to further investigate the role of the PLA2G1B/cofactor system in other infectious diseases and carcinogenesis. We have thus extended the PLA2G1B/cofactor system to HCV and Staphylococcus aureus infections and additional pathologies where microbial proteins with 3S-like motifs also increase PLA2G1B enzymatic activity. Notably, the bacteria Porphyromonas gingivalis, which is associated with pancreatic ductal adenocarcinoma (PDAC), encodes such a cofactor protein and increased PLA2G1B activity in PDAC patient plasma inhibits the CD4 response to IL-7. Our findings identify PLA2G1B/cofactor system as a CD4 T-cell inhibitor. It involves the gC1qR and disease-specific cofactors which are gC1qR-binding proteins that can contain 3S-like motifs. This mechanism involved in HIV-1 immunodeficiency could play a role in pancreatic cancer and several other diseases. These observations suggest that the PLA2G1B/cofactor system is a general CD4 T-cell inhibitor and pave the way for further studies to better understand the role of CD4 T-cell anergy in infectious diseases and tumor escape.


Assuntos
Linfócitos T CD4-Positivos , Anergia Clonal , Fosfolipases A2 do Grupo IB , Infecções por HIV , Glicoproteínas de Membrana , Receptores de Complemento , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/metabolismo , Fosfolipases A2 do Grupo IB/metabolismo , Humanos , Interleucina-7/metabolismo , Glicoproteínas de Membrana/metabolismo , Ligação Proteica , Receptores de Complemento/metabolismo
13.
Microbes Infect ; 24(3): 104928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34954126

RESUMO

Cationic antimicrobial peptides (CAMPs) are important actors in host innate immunity and represent a promising alternative to combat antibiotic resistance. Here, the bactericidal activity of two CAMPs (LL-37 and CAMA) was evaluated against Pseudomonas aeruginosa (PA) in the presence of IB3-1 cells, a cell line derived from patients with cystic fibrosis. The two CAMPs exerted different effects on PA survival depending on the timing of their administration. We observed a greater bactericidal effect when IB3-1 cells were pretreated with sub-minimum bactericidal concentrations (Sub-MBCs) of the CAMPs prior to infection. These findings suggest that CAMPs induce the production of factors by IB3-1 cells that improve their bactericidal action. However, we observed no bactericidal effect when supra-minimum bactericidal concentrations (Supra-MBCs) of the CAMPs were added to IB3-1 cells at the same time or after infection. Western-blot analysis showed a large decrease in LL-37 levels in supernatants of infected IB3-1 cells and an increase in LL-37 binding to these cells after LL-37 administration. LL-37 induced a weak inflammatory response in the cells without being toxic. In conclusion, our findings suggest a potential prophylactic action of CAMPs. The bactericidal effects were low when the CAMPs were added after cell infection, likely due to degradation of CAMPs by bacterial or epithelial cell proteases and/or due to adherence of CAMPs to cells becoming less available for direct bacterial killing.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Células Epiteliais , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Catelicidinas
14.
Front Microbiol ; 12: 666097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675890

RESUMO

ExoY is among the effectors that are injected by the type III secretion system (T3SS) of Pseudomonas aeruginosa into host cells. Inside eukaryotic cells, ExoY interacts with F-actin, which stimulates its potent nucleotidyl cyclase activity to produce cyclic nucleotide monophosphates (cNMPs). ExoY has broad substrate specificity with GTP as a preferential substrate in vitro. How ExoY contributes to the virulence of P. aeruginosa remains largely unknown. Here, we examined the prevalence of active ExoY among strains from the international P. aeruginosa reference panel, a collection of strains that includes environmental and clinical isolates, commonly used laboratory strains, and sequential clonal isolates from cystic fibrosis (CF) patients and thus represents the large diversity of this bacterial species. The ability to secrete active ExoY was determined by measuring the F-actin stimulated guanylate cyclase (GC) activity in bacterial culture supernatants. We found an overall ExoY activity prevalence of about 60% among the 40 examined strains with no significant difference between CF and non-CF isolates. In parallel, we used cellular infection models of human lung epithelial cells to compare the cytotoxic effects of isogenic reference strains expressing active ExoY or lacking the exoY gene. We found that P. aeruginosa strains lacking ExoY were in fact more cytotoxic to the epithelial cells than those secreting active ExoY. This suggests that under certain conditions, ExoY might partly alleviate the cytotoxic effects of other virulence factors of P. aeruginosa.

15.
Biochimie ; 189: 120-136, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34175441

RESUMO

We previously showed that injection of recombinant human group IIA secreted phospholipase A2 (hGIIA sPLA2) to Plasmodium chabaudi-infected mice lowers parasitaemia by 20%. Here, we show that transgenic (TG) mice overexpressing hGIIA sPLA2 have a peak of parasitaemia about 30% lower than WT littermates. During infection, levels of circulating sPLA2, enzymatic activity and plasma lipid peroxidation were maximal at day-14, the peak of parasitaemia. Levels of hGIIA mRNA increased in liver but not in spleen and blood cells, suggesting that liver may contribute as a source of circulating hGIIA sPLA2. Before infection, baseline levels of leukocytes and pro-inflammatory cytokines were higher in TG mice than WT littermates. Upon infection, the number of neutrophils, lymphocytes and monocytes increased and were maximal at the peak of parasitaemia in both WT and TG mice, but were higher in TG mice. Similarly, levels of the Th1 cytokines IFN-γ and IL-2 increased in WT and TG mice, but were 7.7- and 1.7-fold higher in TG mice. The characteristic shift towards Th2 cytokines was observed during infection in both WT and TG mice, with increased levels of IL-10 and IL-4 at day-14. The current data are in accordance with our previous in vitro findings showing that hGIIA kills parasites by releasing toxic lipids from oxidized lipoproteins. They further show that hGIIA sPLA2 is induced during mouse experimental malaria and has a protective in vivo role, lowering parasitaemia by likely releasing toxic lipids from oxidized lipoproteins but also indirectly by promoting a more sustained innate immune response.


Assuntos
Fosfolipases A2 do Grupo II/imunologia , Malária/imunologia , Plasmodium chabaudi/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Fosfolipases A2 do Grupo II/genética , Humanos , Malária/genética , Camundongos , Camundongos Transgênicos
16.
Front Pharmacol ; 11: 1096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848733

RESUMO

Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.

17.
Front Immunol ; 11: 1198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695100

RESUMO

The treatment of respiratory infections is associated with the dissemination of antibiotic resistance in the community and clinical settings. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides (AMPs), the central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. Most AMPs are epithelium-derived and play a key role in host defense at mucosal surfaces. They are classified on the basis of their structure and amino acid motifs. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils, in particular, contribute to AMP synthesis. The relevance of AMPs for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Of note, AMPs are active against bacterial strains that are resistant to conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of AMPs. In this review, we focus on studies related to direct bactericidal effects of AMPs and their potential clinical applications with a particular focus on cystic fibrosis.


Assuntos
Fibrose Cística/imunologia , Imunidade Inata/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Mucosa Respiratória/imunologia , Animais , Humanos , Proteínas Citotóxicas Formadoras de Poros/farmacologia
18.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L95-L104, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401671

RESUMO

Secreted phospholipase A2 hydrolyzes surfactant phospholipids and is crucial for the inflammatory cascade; preterm neonates are treated with exogenous surfactant, but the interaction between surfactant and phospholipase is unknown. We hypothesize that this interplay is complex and the enzyme plays a relevant role in neonates needing surfactant replacement. We aimed to: 1) identify phospholipases A2 isoforms expressed in preterm lung; 2) study the enzyme role on surfactant retreatment and function and the effect of exogenous surfactant on the enzyme system; and 3) verify whether phospholipase A2 is linked to respiratory outcomes. In bronchoalveolar lavages of preterm neonates, we measured enzyme activity (alone or with inhibitors), enzyme subtypes, surfactant protein-A, and inflammatory mediators. Surfactant function and phospholipid profile were also tested. Urea ratio was used to obtain epithelial lining fluid concentrations. Follow-up data were prospectively collected. Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. Neonates needing surfactant retreatment have higher enzyme activity (P = 0.021) and inflammatory mediators (P always ≤ 0.001) and lower amounts of phospholipids (P always < 0.05). Enzyme activity was inversely correlated to surfactant adsorption (ρ = -0.6; P = 0.008; adjusted P = 0.009), total phospholipids (ρ = -0.475; P = 0.05), and phosphatidylcholine (ρ = -0.622; P = 0.017). Exogenous surfactant significantly reduced global phospholipase activity (P < 0.001) and subtype-IIA (P = 0.005) and increased dioleoylphosphatidylglycerol (P < 0.001) and surfactant adsorption (P < 0.001). Enzyme activity correlated with duration of ventilation (ρ = 0.679, P = 0.005; adjusted P = 0.04) and respiratory morbidity score at 12 mo postnatal age (τ-b = 0.349, P = 0.037; adjusted P = 0.043) but was not associated with mortality, bronchopulmonary dysplasia, or other long-term respiratory outcomes.


Assuntos
Recém-Nascido Prematuro/fisiologia , Fosfolipases A2 Secretórias/metabolismo , Surfactantes Pulmonares/metabolismo , Respiração , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Fosfolipases A2 Secretórias/antagonistas & inibidores , Fosfolipídeos
19.
Trends Immunol ; 41(4): 313-326, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151494

RESUMO

The enzyme type IIA secreted phospholipase A2 (sPLA2-IIA) is crucial for mammalian innate host defense against bacterial pathogens. Most studies have investigated the role of sPLA2-IIA in systemic bacterial infections, identifying molecular pathways of bacterial resistance against sPLA2-IIA-mediated killing, and providing insight into sPLA2-IIA mechanisms of action. Sensitization of (antibiotic-resistant) bacteria to sPLA2-IIA action by blocking bacterial resistance or by applying sPLA2-IIA to treat bacterial infections might represent a therapeutic option in the future. Because sPLA2-IIA is highly expressed at mucosal barriers, we also discuss how sPLA2-IIA is likely to be an important driver of microbiome composition; we anticipate that future research in this area may bring new insights into the role of sPLA2-IIA in health and disease.


Assuntos
Infecções Bacterianas , Interações entre Hospedeiro e Microrganismos , Fosfolipases A2 Secretórias , Animais , Antibacterianos/uso terapêutico , Infecções Bacterianas/enzimologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/terapia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Fosfolipases A2 Secretórias/imunologia , Sepse/enzimologia , Sepse/imunologia , Sepse/terapia
20.
J Cyst Fibros ; 19 Suppl 1: S47-S53, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685398

RESUMO

The respiratory tract of individuals with cystic fibrosis is host to polymicrobial infections that persist for decades and lead to significant morbidity and mortality. Improving our understanding of CF respiratory infections requires coordinated efforts from researchers in the fields of microbial physiology, genomics, and ecology, as well as epithelial biology and immunology. Here, we have highlighted examples from recent CF microbial pathogenesis literature of how the host nutritional environment, immune response, and microbe-microbe interactions can feedback onto each other, leading to diverse effects on lung disease pathogenesis in CF.


Assuntos
Fibrose Cística , Interações Hospedeiro-Patógeno , Interações Microbianas , Infecções Respiratórias , Anti-Infecciosos/farmacologia , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Humanos , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Sistema Respiratório/patologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA