Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microb Ecol ; 83(4): 886-898, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34245330

RESUMO

The intensification of biological processes coping with salt stress became a major issue to mitigate land degradation. The Sine-Saloum Delta in Senegal is characterized by salt-affected soils with vegetation dominated by salt-tolerant grass Sporobolus robustus and shrubs like Prosopis juliflora. Plant experiments in controlled conditions suggested that arbuscular mycorrhizal (AM) fungi might be the key actors of facilitation process observed between S. robustus and P. juliflora, but the AM fungal community determinants are largely unknown. The current field-based study aimed at (1) characterizing the environmental drivers (rhizosphere physico-chemical properties, plant type and season) of the AM fungal community along an environmental gradient and (2) identifying the AM fungal taxa that might explain the S. robustus-mediated benefits to P. juliflora. Glomeraceae predominated in the two plants, but a higher richness was observed for S. robustus. The pH and salinity were the main drivers of AM fungal community associated with the two plants, negatively impacting richness and diversity. However, while a negative impact was also observed on mycorrhizal colonization for S. robustus, P. juliflora showed opposite colonization patterns. Furthermore, no change was observed in terms of AM fungal community dissimilarity between the two plants along the environmental gradient as would be expected according to the stress-gradient and complementary hypotheses when a facilitation process occurs. However, changes in intraspecific diversity of shared AM fungal community between the two plants were observed, highlighting 23 AM fungal OTUs associated with both plants and the highest salinity levels. Consequently, the increase of their abundance and frequency along the environmental gradient might suggest their potential role in the facilitation process that can take place between the two plants. Their use in ecological engineering could also represent promising avenues for improving vegetation restoration in saline Senegalese's lands.


Assuntos
Micorrizas , Prosopis , Cebinae , Plantas/microbiologia , Poaceae/microbiologia , Solo/química , Microbiologia do Solo
2.
PLoS One ; 12(11): e0187758, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29155841

RESUMO

Soil fungi associated with plant roots, notably ectomycorrhizal (EcM) fungi, are central in above- and below-ground interactions in Mediterranean forests. They are a key component in soil nutrient cycling and plant productivity. Yet, major disturbances of Mediterranean forests, particularly in the Southern Mediterranean basin, are observed due to the greater human pressures and climate changes. These disturbances highly impact forest cover, soil properties and consequently the root-associated fungal communities. The implementation of efficient conservation strategies of Mediterranean forests is thus closely tied to our understanding of root-associated fungal biodiversity and environmental rules driving its diversity and structure. In our study, the root-associated fungal community of Q. suber was analyzed using high-throughput sequencing across three major Moroccan cork oak habitats. Significant differences in root-associated fungal community structures of Q. suber were observed among Moroccan cork oak habitats (Maâmora, Benslimane, Chefchaoun) subjected to different human disturbance levels (high to low disturbances, respectively). The fungal community structure changes correlated with a wide range of soil properties, notably with pH, C:N ratio (P = 0.0002), and available phosphorus levels (P = 0.0001). More than 90 below-ground fungal indicators (P < 0.01)-either of a type of habitat and/or a soil property-were revealed. The results shed light on the ecological significance of ubiquitous ectomycorrhiza (Tomentella, Russula, Cenococcum), and putative sclerotia-associated/ericoid mycorrhizal fungal taxa (Cladophialophora, Oidiodendron) in the Moroccan cork oak forest, and their intraspecific variability regarding their response to land use and soil characteristics.


Assuntos
Fixação de Nitrogênio/genética , Filogenia , Raízes de Plantas/microbiologia , Quercus/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Biodiversidade , Ecossistema , Florestas , Sequenciamento de Nucleotídeos em Larga Escala , Marrocos , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Solo/química , Microbiologia do Solo
3.
Springerplus ; 5(1): 1085, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468385

RESUMO

BACKGROUND: This work aimed at characterizing 12 isolates of the genus Tuber including Tuber melanosporum (11 isolates) and Tuber brumale (one isolate). This was done using internal transcribed spacer (ITS) sequences, confirming their origin. RESULTS: Analysis of their mating type revealed that both MAT1-1 and MAT1-2 exist within these isolates (with 3 and 8 of each, respectively). We observed that each of these cultures was consistently associated with one bacterium that was intimately linked to fungal growth. These bacterial associates failed to grow in the absence of fungus. We extracted DNA from bacterial colonies in the margin of mycelium and sequenced a nearly complete 16S rDNA gene and a partial ITS fragment. We found they all belonged to the genus Rhodopseudomonas, fitting within different phylogenetic clusters. No relationships were evidenced between bacterial and fungal strains or mating types. Rhodopseudomonas being a sister genus to Bradyrhizobium, we tested the nodulation ability of these bacteria on a promiscuously nodulating legume (Acacia mangium), without success. We failed to identify any nifH genes among these isolates, using two different sets of primers. CONCLUSIONS: While the mechanisms of interaction between Tuber and Rhodopseudomonas remain to be elucidated, their interdependency for in vitro growth seems a novel feature of this fungus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA