Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Biol Chem ; 295(48): 16251-16266, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32913125

RESUMO

Several plant-derived compounds have demonstrated efficacy in pre-clinical Alzheimer's disease (AD) rodent models. Each of these compounds share a gallic acid (GA) moiety, and initial assays on this isolated molecule indicated that it might be responsible for the therapeutic benefits observed. To test this hypothesis in a more physiologically relevant setting, we investigated the effect of GA in the mutant human amyloid ß-protein precursor/presenilin 1 (APP/PS1) transgenic AD mouse model. Beginning at 12 months, we orally administered GA (20 mg/kg) or vehicle once daily for 6 months to APP/PS1 mice that have accelerated Alzheimer-like pathology. At 18 months of age, GA therapy reversed impaired learning and memory as compared with vehicle, and did not alter behavior in nontransgenic littermates. GA-treated APP/PS1 mice had mitigated cerebral amyloidosis, including brain parenchymal and cerebral vascular ß-amyloid deposits, and decreased cerebral amyloid ß-proteins. Beneficial effects co-occurred with reduced amyloidogenic and elevated nonamyloidogenic APP processing. Furthermore, brain inflammation, gliosis, and oxidative stress were alleviated. We show that GA simultaneously elevates α- and reduces ß-secretase activity, inhibits neuroinflammation, and stabilizes brain oxidative stress in a pre-clinical mouse model of AD. We further demonstrate that GA increases abundance of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10, Adam10) proprotein convertase furin and activates ADAM10, directly inhibits ß-site APP cleaving enzyme 1 (BACE1, Bace1) activity but does not alter Adam10 or Bace1 transcription. Thus, our data reveal novel post-translational mechanisms for GA. We suggest further examination of GA supplementation in humans will shed light on the exciting therapeutic potential of this molecule.


Assuntos
Proteína ADAM10/metabolismo , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Gálico/farmacologia , Proteínas de Membrana/metabolismo , Proteína ADAM10/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Modelos Animais de Doenças , Furina/genética , Furina/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo
2.
Elife ; 92020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32579111

RESUMO

The neurotoxicity of air pollution is undefined for sex and APOE alleles. These major risk factors of Alzheimer's disease (AD) were examined in mice given chronic exposure to nPM, a nano-sized subfraction of urban air pollution. In the cerebral cortex, female mice had two-fold more genes responding to nPM than males. Transcriptomic responses to nPM had sex-APOE interactions in AD-relevant pathways. Only APOE3 mice responded to nPM in genes related to Abeta deposition and clearance (Vav2, Vav3, S1009a). Other responding genes included axonal guidance, inflammation (AMPK, NFKB, APK/JNK signaling), and antioxidant signaling (NRF2, HIF1A). Genes downstream of NFKB and NRF2 responded in opposite directions to nPM. Nrf2 knockdown in microglia augmented NFKB responses to nPM, suggesting a critical role of NRF2 in air pollution neurotoxicity. These findings give a rationale for epidemiologic studies of air pollution to consider sex interactions with APOE alleles and other AD-risk genes.


Assuntos
Apolipoproteínas E/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Nanopartículas/toxicidade , Administração por Inalação , Poluentes Atmosféricos/toxicidade , Animais , Apolipoproteínas E/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Transcriptoma
3.
J Biol Chem ; 294(8): 2714-2731, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30563837

RESUMO

"Nutraceuticals" are well-tolerated natural dietary compounds with drug-like properties that make them attractive as Alzheimer's disease (AD) therapeutics. Combination therapy for AD has garnered attention following a recent National Institute on Aging mandate, but this approach has not yet been fully validated. In this report, we combined the two most promising nutraceuticals with complementary anti-amyloidogenic properties: the plant-derived phenolics (-)-epigallocatechin-3-gallate (EGCG, an α-secretase activator) and ferulic acid (FA, a ß-secretase modulator). We used transgenic mice expressing mutant human amyloid ß-protein precursor and presenilin 1 (APP/PS1) to model cerebral amyloidosis. At 12 months of age, we orally administered EGCG and/or FA (30 mg/kg each) or vehicle once daily for 3 months. At 15 months, combined EGCG-FA treatment reversed cognitive impairment in most tests of learning and memory, including novel object recognition and maze tasks. Moreover, EGCG- and FA-treated APP/PS1 mice exhibited amelioration of brain parenchymal and cerebral vascular ß-amyloid deposits and decreased abundance of amyloid ß-proteins compared with either EGCG or FA single treatment. Combined treatment elevated nonamyloidogenic soluble APP-α and α-secretase candidate and down-regulated amyloidogenic soluble APP-ß, ß-C-terminal APP fragment, and ß-secretase protein expression, providing evidence for a shift toward nonamyloidogenic APP processing. Additional beneficial co-treatment effects included amelioration of neuroinflammation, oxidative stress, and synaptotoxicity. Our findings offer preclinical evidence that combined treatment with EGCG and FA is a promising AD therapeutic approach.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/fisiologia , Catequina/análogos & derivados , Disfunção Cognitiva/tratamento farmacológico , Ácidos Cumáricos/farmacologia , Modelos Animais de Doenças , Presenilina-1/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Comportamento Animal , Catequina/farmacologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Quimioterapia Combinada , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
J Alzheimers Dis ; 63(2): 577-590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29660934

RESUMO

Immune mechanisms may be important in the pathogenesis of Alzheimer's disease (AD). Yet, studies comparing cerebrospinal fluid (CSF) and plasma immune marker levels of healthy and demented individuals have yielded conflicting results. We analyzed CSF from 101 members of the parental history-positive PREVENT-AD cohort of healthy aging adults, and 237 participants without dementia from the initial cohort of the Alzheimer's Disease Neuroimaging Initiative (ADNI-1). Following recent practice, we used the biomarkers total-tau and amyloid-ß1-42 to allocate participants from each study into four stages of AD pathogenesis: Stage 0 (no abnormality), Stage 1 (reduced amyloid-ß1-42), Stage 2 (reduced amyloid-ß1-42 and increased total-tau), or "Suspected Non-Alzheimer Pathology" (elevated total-tau only). Investigating the PREVENT-AD participants' CSF assay results for 19 immune/inflammatory markers, we found six that showed a distinct bi-directional relationship with pathogenetic stage. Relative to Stage 0, these were diminished at Stage 1 but strongly increased at Stage 2. Among the ADNI participants (90 healthy controls and 147 with mild cognitive impairment), we found that 23 of 83 available CSF markers also showed this distinct pattern. These results support recent observations that immune activation may become apparent only after the onset of both amyloid and tau pathologies. Unexpectedly, they also suggest that immune marker activity may diminish along with earliest appearance of amyloid-ß plaque pathology. These findings may explain discordant results from past studies, and suggest the importance of characterizing the extent of AD pathology when comparing clinical groups.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade
5.
J Neural Transm (Vienna) ; 125(5): 751-770, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29027011

RESUMO

All of the common neurodegenerative disorders-Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion diseases-are characterized by accumulation of misfolded proteins that trigger activation of microglia; brain-resident mononuclear phagocytes. This chronic form of neuroinflammation is earmarked by increased release of myriad cytokines and chemokines in patient brains and biofluids. Microglial phagocytosis is compromised early in the disease process, obfuscating clearance of abnormal proteins. This review identifies immune pathologies shared by the major neurodegenerative disorders. The overarching concept is that aberrant innate immune pathways can be targeted for return to homeostasis in hopes of coaxing microglia into clearing neurotoxic misfolded proteins.


Assuntos
Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Humanos , Microglia/patologia , Doenças Neurodegenerativas/patologia
6.
J Biol Chem ; 292(27): 11310-11325, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28512130

RESUMO

To date, there is no effective Alzheimer's disease (AD)-modifying therapy. Nonetheless, combination therapy holds promise, and nutraceuticals (natural dietary compounds with therapeutic properties) and their synthetic derivatives are well-tolerated candidates. We tested whether combination therapy with octyl gallate (OG) and ferulic acid (FA) improves cognition and mitigates AD-like pathology in the presenilin-amyloid ß-protein precursor (PSAPP) transgenic mouse model of cerebral amyloidosis. One-year-old mice with established ß-amyloid plaques received daily doses of OG and FA alone or in combination for 3 months. PSAPP mice receiving combination therapy had statistically significant improved cognitive function versus OG or FA single treatment on some (but not all) measures. We also observed additional statistically significant reductions in brain parenchymal and cerebral vascular ß-amyloid deposits as well as brain amyloid ß-protein abundance in OG- plus FA-treated versus singly-treated PSAPP mice. These effects coincided with enhanced nonamyloidogenic amyloid ß-protein precursor (APP) cleavage, increased α-secretase activity, and ß-secretase inhibition. We detected elevated expression of nonamyloidogenic soluble APP-α and the α-secretase candidate, a disintegrin and metalloproteinase domain-containing protein 10. Correspondingly, amyloidogenic ß-carboxyl-terminal APP fragment and ß-site APP-cleaving enzyme 1 expression levels were reduced. In parallel, the ratio of ß- to α-carboxyl-terminal APP fragment was decreased. OG and FA combination therapy strikingly attenuated neuroinflammation, oxidative stress, and synaptotoxicity. Co-treatment afforded additional statistically significant benefits on some, but not all, of these outcome measures. Taken together, these data provide preclinical proof-of-concept for AD combination therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Ácido Gálico/análogos & derivados , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Ácido Gálico/farmacologia , Humanos , Camundongos , Camundongos Transgênicos
7.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795421

RESUMO

CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE: Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Interleucina-17/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Febre do Nilo Ocidental/tratamento farmacológico , Vírus do Nilo Ocidental/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/virologia , Feminino , Expressão Gênica , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/virologia , Cultura Primária de Células , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/mortalidade , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/crescimento & desenvolvimento
9.
J Immunol ; 197(11): 4425-4435, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798161

RESUMO

West Nile virus (WNV) is a neurotropic ssRNA flavivirus that can cause encephalitis, meningitis, and death in humans and mice. Human TLR7 and TLR8 and mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of mouse TLR8 in antiviral immunity is poorly understood. In this article, we report that TLR8-deficient (Tlr8-/-) mice were resistant to WNV infection compared with wild-type controls. Efficient WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8-/- mice were attributed to overexpression of Tlr7 and IFN-stimulated gene-56 expression, whereas reduced expression of the proapoptotic gene coding Bcl2-associated X protein was observed. Interestingly, suppressor of cytokine signaling (SOCS)-1 directly associated with TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, whereas selective small interfering RNA knockdown of Socs-1 resulted in induced IFN-stimulated gene-56 and Tlr7 expression following WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated antiviral immunity during WNV infection in mice.


Assuntos
Proteína 1 Supressora da Sinalização de Citocina/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Camundongos , Camundongos Knockout , Proteína 1 Supressora da Sinalização de Citocina/genética , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética , Febre do Nilo Ocidental/genética
10.
Immunity ; 45(4): 717-718, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760336

RESUMO

In a recent issue of Nature, Sevigny et al. (2016) report findings from a phase 1b clinical trial of aducanumab (a monoclonal antibody targeting misfolded amyloid-ß peptides), revitalizing the "amyloid cascade hypothesis" and bringing mononuclear phagocytes center stage in the treatment of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo
11.
J Virol ; 90(20): 9533-42, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512072

RESUMO

UNLABELLED: We sought to determine the possibility of an interrelationship between primary virus replication in the eye, the level of viral DNA in the trigeminal ganglia (TG) during latency, and the amount of virus reactivation following ocular herpes simplex virus type 1 (HSV-1) infection. Mice were infected with virulent (McKrae) or avirulent (KOS and RE) strains of HSV-1, and virus titers in the eyes and TG during primary infection, level of viral gB DNA in TG on day 28 postinfection (p.i.), and virus reactivation on day 28 p.i. as measured by explant reactivation were calculated. Our results suggest that the avirulent strains of HSV-1, even after corneal scarification, had lower virus titers in the eye, had less latency in the TG, and took a longer time to reactivate than virulent strains of HSV-1. The time to explant reactivation of avirulent strains of HSV-1 was similar to that of the virulent LAT((-)) McKrae-derived mutant. The viral dose with the McKrae strain of HSV-1 affected the level of viral DNA and time to explant reactivation. Overall, our results suggest that there is no absolute correlation between primary virus titer in the eye and TG and the level of viral DNA in latent TG and time to reactivation. IMPORTANCE: Very little is known regarding the interrelationship between primary virus replication in the eye, the level of latency in TG, and the time to reactivate in the mouse model. This study was designed to answer these questions. Our results point to the absence of any correlation between the level of primary virus replication and the level of viral DNA during latency, and neither was an indicator of how rapidly the virus reactivated following explant TG-induced reactivation.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/genética , Gânglio Trigeminal/virologia , Ativação Viral/genética , Latência Viral/genética , Replicação Viral/genética , Animais , Córnea/virologia , DNA Viral/genética , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Carga Viral/métodos
12.
J Neurochem ; 138(5): 653-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27248001

RESUMO

Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Imunidade Inata/imunologia , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Sistema Nervoso Central/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Doenças Neurodegenerativas/imunologia
13.
J Virol ; 90(10): 5059-5067, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962220

RESUMO

UNLABELLED: Based on an explant reactivation model, it has been proposed that CD8(+) T cells maintain latency in trigeminal ganglia (TG) of mice latently infected with herpes simplex virus 1 (HSV-1) [T. Liu, K. M. Khanna, X. Chen, D. J. Fink, and R. L. Hendricks, J Exp Med 191:1459-1466, 2000, doi:10.1084/jem.191.9.1459; K. M. Khanna, R. H. Bonneau, P. R. Kinchington, and R. L. Hendricks, Immunity 18:593-603, 2003, doi:10.1016/S1074-7613(03)00112-2]. In those studies, BALB/c mice were ocularly infected with an avirulent HSV-1 strain (RE) after corneal scarification. However, in our studies, we typically infect mice with a virulent HSV-1 strain (McKrae) that does not require corneal scarification. Using a combination of knockout mice, adoptive transfers, and depletion studies, we recently found that CD8α(+) dendritic cells (DCs) contribute to HSV-1 latency and reactivation in TG of ocularly infected mice (K. R. Mott, S. J. Allen, M. Zandian, B. Konda, B. G. Sharifi, C. Jones, S. L. Wechsler, T. Town, and H. Ghiasi, PLoS One 9:e93444, 2014, doi:10.1371/journal.pone.0093444). This suggested that CD8(+) T cells might not be the major regulators of HSV-1 latency in the mouse TG. To investigate this iconoclastic possibility, we used a blocking CD8 antibody and CD8(+) T cells in reactivated TG explants from mice latently infected with (i) the avirulent HSV-1 strain RE following corneal scarification or (ii) the virulent HSV-1 strain McKrae without corneal scarification. Independently of the strain or approach, our results show that CD8α(+) DCs, not CD8(+) T cells, drive latency and reactivation. In addition, adoptive transfer of CD8(+) T cells from wild-type (wt) mice to CD8α(-/-) mice did not restore latency to the level for wt mice or wt virus. In the presence of latency-associated transcript (LAT((+)); wt virus), CD8(+) T cells seem to play a bystander role in the TG. These bystander T cells highly express PD-1, most likely due to the presence of CD8α(+) DCs. Collectively, these results support the notion that CD8(+) T cells do not play a major role in maintaining HSV-1 latency and reactivation. SIGNIFICANCE: This study addresses a fundamentally important and widely debated issue in the field of HSV latency-reactivation. In this article, we directly compare the effects of anti-CD8 antibody, CD8(+) T cells, LAT, and CD8α(+) DCs in blocking explant reactivation in TG of mice latently infected with avirulent or virulent HSV-1. Our data suggest that CD8(+) T cells are not responsible for an increase or maintenance of latency in ocularly infected mice. However, they seem to play a bystander role that correlates with the presence of LAT, higher subclinical reactivation levels, and higher PD-1 expression levels.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Herpesvirus Humano 1/fisiologia , Ceratite Herpética/imunologia , Ceratite Herpética/virologia , Gânglio Trigeminal/virologia , Latência Viral , Animais , Células Dendríticas/química , Olho/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Ativação Viral
14.
J Vis Exp ; (118)2016 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-28060279

RESUMO

Neuroinflammation is now recognized as a major etiological factor in neurodegenerative disease. Mononuclear phagocytes are innate immune cells responsible for phagocytosis and clearance of debris and detritus. These cells include CNS-resident macrophages known as microglia, and mononuclear phagocytes infiltrating from the periphery. Light microscopy has generally been used to visualize phagocytosis in rodent or human brain specimens. However, qualitative methods have not provided definitive evidence of in vivo phagocytosis. Here, we describe quantitative 3D in silico modeling (q3DISM), a robust method allowing for true 3D quantitation of amyloid-ß (Aß) phagocytosis by mononuclear phagocytes in rodent Alzheimer's Disease (AD) models. The method involves fluorescently visualizing Aß encapsulated within phagolysosomes in rodent brain sections. Large z-dimensional confocal datasets are then 3D reconstructed for quantitation of Aß spatially colocalized within the phagolysosome. We demonstrate the successful application of q3DISM to mouse and rat brains, but this methodology can be extended to virtually any phagocytic event in any tissue.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Imageamento Tridimensional/métodos , Microglia/citologia , Fagócitos/citologia , Fagocitose , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Biológicos , Ratos
15.
PLoS One ; 10(12): e0145205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26683657

RESUMO

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.


Assuntos
Doença de Alzheimer/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Animais , Anisotropia , Corpo Caloso/patologia , Substância Cinzenta/patologia , Hipocampo/patologia , Humanos , Camundongos , Ratos Endogâmicos F344 , Ratos Transgênicos , Razão Sinal-Ruído
16.
PLoS Pathog ; 11(11): e1005292, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618545

RESUMO

Staphylococcus aureus is a leading cause of skin and soft-tissue infections worldwide. Mice are the most commonly used animals for modeling human staphylococcal infections. However a supra-physiologic S. aureus inoculum is required to establish gross murine skin pathology. Moreover, many staphylococcal factors, including Panton-Valentine leukocidin (PVL) elaborated by community-associated methicillin-resistant S. aureus (CA-MRSA), exhibit selective human tropism and cannot be adequately studied in mice. To overcome these deficiencies, we investigated S. aureus infection in non-obese diabetic (NOD)/severe combined immune deficiency (SCID)/IL2rγnull (NSG) mice engrafted with human CD34+ umbilical cord blood cells. These "humanized" NSG mice require one to two log lower inoculum to induce consistent skin lesions compared with control mice, and exhibit larger cutaneous lesions upon infection with PVL+ versus isogenic PVL- S. aureus. Neutrophils appear important for PVL pathology as adoptive transfer of human neutrophils alone to NSG mice was sufficient to induce dermonecrosis following challenge with PVL+ S. aureus but not PVL- S. aureus. PMX53, a human C5aR inhibitor, blocked PVL-induced cellular cytotoxicity in vitro and reduced the size difference of lesions induced by the PVL+ and PVL- S. aureus, but PMX53 also reduced recruitment of neutrophils and exacerbated the infection. Overall, our findings establish humanized mice as an important translational tool for the study of S. aureus infection and provide strong evidence that PVL is a human virulence factor.


Assuntos
Toxinas Bacterianas/farmacologia , Suscetibilidade a Doenças/imunologia , Exotoxinas/farmacologia , Leucocidinas/farmacologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico
17.
Trends Neurosci ; 38(11): 674-681, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26549882

RESUMO

Alzheimer's disease (AD) is the most common age-related dementia. Pathognomonic accumulation of cerebral ß-amyloid plaques likely results from imbalanced production and removal of amyloid-ß (Aß) peptides. In AD, innate immune cells lose their ability to restrict cerebral Aß accumulation. At least in principle, mononuclear phagocytes can be enlisted to clear Aß/ß-amyloid from the brain. While the classical focus has been on dampening neuroinflammation in the context of AD, we hypothesize that rebalancing cerebral innate immunity by inhibiting actions of key anti-inflammatory cytokines returns the brain to a physiological state. Recent experiments demonstrating beneficial effects of blocking anti-inflammatory cytokine signaling in preclinical mouse models provide supportive evidence. This concept represents an important step toward innate immune-targeted therapy to combat AD.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/imunologia , Imunidade Inata/imunologia , Microglia/imunologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microglia/metabolismo
18.
CNS Neurol Disord Drug Targets ; 14(5): 600-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25921740

RESUMO

Medulloblastoma, a tumor of the cerebellum, is the most common pediatric central nervous system malignancy. These tumors are etiologically linked to mutations in the Sonic hedgehog (Shh) pathway, which signals through the primary, non-motile cilium. The growth of these aggressive tumors relies on self-renewal of tumor-propagating cells known as cancer stem cells (CSCs). Previous reports have implicated CD133-expressing cells as CSCs in brain tumors, while those expressing CD15 have been shown to propagate medulloblastoma. Here, we demonstrate that CD133+ and CD15+ cells are distinct medulloblastoma populations. CD15+ cells comprise approximately 0.5-1% of total human medulloblastoma cells, display CSC properties in culture and are detected in the Smoothened A1 transgenic mouse model of medulloblastoma. Additionally, we report on a medulloblastoma patient with enriched CD15+ cells in recurrent vs primary medulloblastoma. We also demonstrate that human medulloblastoma cells critically rely on establishment of primary cilia to drive Shh-mediated cell division. Primary cilia are found in external granule cells of human fetal cerebellum and in 12/14 medulloblastoma samples. Yet, CD15+ medulloblastoma cells lack primary cilia, suggesting that this CSC population signals independently of Shh. These results are important when considering the effects of current and prospective treatment modalities on medulloblastoma CSC populations.


Assuntos
Neoplasias Encefálicas/patologia , Cílios/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Meduloblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antígenos CD/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/classificação , Bromodesoxiuridina , Feto , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Antígeno Ki-67/metabolismo , Imageamento por Ressonância Magnética , Meduloblastoma/classificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/metabolismo , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Receptor Smoothened , Fatores de Tempo , Fatores de Transcrição/metabolismo
19.
Lancet Neurol ; 14(4): 388-405, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25792098

RESUMO

Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anti-Inflamatórios não Esteroides/uso terapêutico , Lesões Encefálicas/complicações , Imunidade Inata , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Microglia/imunologia , Microglia/patologia , Obesidade/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Astrócitos/imunologia , Astrócitos/patologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunização , Inflamação/diagnóstico , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Locus Cerúleo/patologia , Nootrópicos/administração & dosagem , Obesidade/metabolismo , Fagocitose , Dobramento de Proteína , Fatores de Risco , Índice de Gravidade de Doença
20.
Proc Natl Acad Sci U S A ; 112(13): E1577-86, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25770217

RESUMO

Physiological processes rely on the regulation of total mRNA levels in a cell. In diploid organisms, the transcriptional activation of one or both alleles of a gene may involve trans-allelic interactions that provide a tight spatial and temporal level of gene expression regulation. The mechanisms underlying such interactions still remain poorly understood. Here, we demonstrate that lipopolysaccharide stimulation of murine macrophages rapidly resulted in the actin-mediated and transient homologous spatial proximity of Tnfα alleles, which was necessary for the mono- to biallelic switch in gene expression. We identified two new complementary long noncoding RNAs transcribed from the TNFα locus and showed that their knockdown had opposite effects in Tnfα spatial proximity and allelic expression. Moreover, the observed spatial proximity of Tnfα alleles depended on pyruvate kinase muscle isoform 2 (PKM2) and T-helper-inducing POZ-Krüppel-like factor (ThPOK). This study suggests a role for lncRNAs in the regulation of somatic homologous spatial proximity and allelic expression control necessary for fine-tuning mammalian immune responses.


Assuntos
Linfotoxina-alfa/genética , Linfotoxina-beta/genética , RNA Longo não Codificante , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Alelos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Lipopolissacarídeos/química , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA