Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS One ; 18(11): e0295009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019847

RESUMO

A major unmet need in the cystic fibrosis (CF) therapeutic landscape is the lack of effective treatments for nonsense CFTR mutations, which affect approximately 10% of CF patients. Correction of nonsense CFTR mutations via genomic editing represents a promising therapeutic approach. In this study, we tested whether prime editing, a novel CRISPR-based genomic editing method, can be a potential therapeutic modality to correct nonsense CFTR mutations. We generated iPSCs from a CF patient homozygous for the CFTR W1282X mutation. We demonstrated that prime editing corrected one mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. We further demonstrated that prime editing may directly repair mutations in iPSC-derived airway epithelial cells when the prime editing machinery is efficiently delivered by helper-dependent adenovirus (HDAd). Together, our data demonstrated that prime editing may potentially be applied to correct CFTR mutations such as W1282X.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Fibrose Cística/terapia , Fibrose Cística/tratamento farmacológico , Códon sem Sentido , Células Epiteliais
2.
Proc Natl Acad Sci U S A ; 120(49): e2315096120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011564

RESUMO

Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/genética , Pele/metabolismo , Epigenômica , Epigênese Genética , Células-Tronco/metabolismo , Cromatina/metabolismo
5.
Blood ; 133(21): 2245-2246, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122935
6.
JCI Insight ; 4(7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944254

RESUMO

Hypoxic tumor niches are chief causes of treatment resistance and tumor recurrence. Sickle erythrocytes' (SSRBCs') intrinsic oxygen-sensing functionality empowers them to access such hypoxic niches wherein they form microaggregates that induce focal vessel closure. In search of measures to augment the scale of SSRBC-mediated tumor vaso-occlusion, we turned to the vascular disrupting agent, combretastatin A-4 (CA-4). CA-4 induces selective tumor endothelial injury, blood stasis, and hypoxia but fails to eliminate peripheral tumor foci. In this article, we show that introducing deoxygenated SSRBCs into tumor microvessels treated with CA-4 and sublethal radiation (SR) produces a massive surge of tumor vaso-occlusion and broadly propagated tumor infarctions that engulfs treatment-resistant hypoxic niches and eradicates established lung tumors. Tumor regression was histologically corroborated by significant treatment effect. Treated tumors displayed disseminated microvessels occluded by tightly packed SSRBCs along with widely distributed pimidazole-positive hypoxic tumor cells. Humanized HbS-knockin mice (SSKI) but not HbA-knockin mice (AAKI) showed a similar treatment response underscoring SSRBCs as the paramount tumoricidal effectors. Thus, CA-4-SR-remodeled tumor vessels license SSRBCs to produce an unprecedented surge of tumor vaso-occlusion and infarction that envelops treatment-resistant tumor niches resulting in complete tumor regression. Strategically deployed, these innovative tools constitute a major conceptual advance with compelling translational potential.


Assuntos
Anemia Falciforme/sangue , Antineoplásicos Fitogênicos/administração & dosagem , Eritrócitos Anormais/transplante , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/terapia , Animais , Adesão Celular , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada/métodos , Feminino , Técnicas de Introdução de Genes , Hemoglobina Falciforme/genética , Humanos , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/patologia , Recidiva Local de Neoplasia/irrigação sanguínea , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Estilbenos/administração & dosagem , Transplante Heterólogo/métodos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Am Heart Assoc ; 7(23): e010239, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30488760

RESUMO

Background We aim to generate a line of "universal donor" human induced pluripotent stem cells (hi PSC s) that are nonimmunogenic and, therefore, can be used to derive cell products suitable for allogeneic transplantation. Methods and Results hi PSC s carrying knockout mutations for 2 key components (ß2 microglobulin and class II major histocompatibility class transactivator) of major histocompatibility complexes I and II (ie, human leukocyte antigen [HLA] I/ II knockout hi PSC s) were generated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (Cas9) gene-editing system and differentiated into cardiomyocytes. Pluripotency-gene expression and telomerase activity in wild-type ( WT ) and HLAI / II knockout hi PSC s, cardiomyocyte marker expression in WT and HLAI / II knockout hi PSC -derived cardiomyocytes, and assessments of electrophysiological properties (eg, conduction velocity, action-potential and calcium transient half-decay times, and calcium transient increase times) in spheroid-fusions composed of WT and HLAI / II knockout cardiomyocytes, were similar. However, the rates of T-cell activation before (≈21%) and after (≈24%) exposure to HLAI / II knockout hi PSC -derived cardiomyocytes were nearly indistinguishable and dramatically lower than after exposure to WT hi PSC -derived cardiomyocytes (≈75%), and when WT and HLAI / II knockout hi PSC -derived cardiomyocyte spheroids were cultured with human peripheral blood mononuclear cells, the WT hi PSC -derived cardiomyocyte spheroids were smaller and displayed contractile irregularities. Finally, expression of HLA -E and HLA -F was inhibited in HLAI / II knockout cardiomyocyte spheroids after coculture with human peripheral blood mononuclear cells, although HLA -G was not inhibited; these results are consistent with the essential role of class II major histocompatibility class transactivator in transcriptional activation of the HLA -E and HLA-F genes, but not the HLA -G gene. Expression of HLA -G is known to inhibit natural killer cell recognition and killing of cells that lack other HLAs. Conclusions HLAI / II knockout hi PSC s can be differentiated into cardiomyocytes that induce little or no activity in human immune cells and, consequently, are suitable for allogeneic transplantation.


Assuntos
Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco/métodos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Humanos , Masculino , Miócitos Cardíacos/transplante , Transplante Homólogo/métodos
8.
Blood Adv ; 2(21): 2829-2836, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373889

RESUMO

Dynamic regulation of histone modification enzymes such as PRMT1 (protein arginine methyltransferase 1) determines the ordered epigenetic transitions in hematopoiesis. Sorting cells according to the expression levels of histone modification enzymes may further define subpopulations in hematopoietic lineages with unique differentiation potentials that are presently defined by surface markers. We discovered a vital near infrared dye, E84, that fluoresces brightly following binding to PRMT1 and excitation with a red laser. The staining intensity as measured by flow cytometry is correlated with the PRMT1 expression level. Importantly, E84 staining has no apparent negative effect on the proliferation of the labeled cells. Given that long-term hematopoietic stem cells (LT-HSCs) produce low levels of PRMT1, we used E84 to sort LT-HSCs from mouse bone marrow. We found that SLAM (the signalling lymphocyte activation molecule family) marker-positive LT-HSCs were enriched in the E84low cell fraction. We then performed bone marrow transplantations with E84high or E84low Lin-Sca1+Kit+ (LSK) cells and showed that whole blood cell lineages were successfully reconstituted 16 weeks after transplanting 200 E84low LSK cells. Thus, E84 is a useful new tool to probe the role of PRMT1 in hematopoiesis and leukemogenesis. Developing E84 and other small molecules to label histone modification enzymes provides a convenient approach without modifying gene loci to study the interaction between hematopoietic stem/progenitor cell epigenetic status and differentiation state.


Assuntos
Células Sanguíneas/metabolismo , Carbocianinas/química , Epigênese Genética , Corantes Fluorescentes/química , Proteína-Arginina N-Metiltransferases/genética , Animais , Ataxina-1/metabolismo , Células Sanguíneas/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Linhagem da Célula , Citometria de Fluxo/métodos , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
9.
Biol Blood Marrow Transplant ; 24(8): 1554-1562, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684562

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) can be curative for patients with sickle cell disease (SCD). However, morbidity associated with myeloablative conditioning and graft-versus-host disease has limited its utility. To this end, autologous HSCT for SCD using lentiviral gene-modified bone marrow (BM) or peripheral blood stem cells has been undertaken, although toxicities of fully ablative conditioning with busulfan and incomplete engraftment have been encountered. Treosulfan, a busulfan analog with a low extramedullary toxicity profile, has been used successfully as part of a myeloablative conditioning regimen in the allogeneic setting in SCD. To further minimize toxicity of conditioning, noncytotoxic monoclonal antibodies that clear stem cells from the marrow niche, such as anti-c-Kit (ACK2), have been considered. Using a murine model of SCD, we sought to determine whether nonmyeloablative conditioning followed by transplantation with syngeneic BM cells could ameliorate the disease phenotype. Treosulfan and ACK2, in a dose-dependent manner, decreased BM cellularity and induced cytopenia in SCD mice. Conditioning with treosulfan alone at nonmyeloablative dosing (3.6 g/kg), followed by transplantation with syngeneic BM donor cells, permitted long-term mixed-donor chimerism. Level of chimerism correlated with improvement in hematologic parameters, normalization of urine osmolality, and improvement in liver and spleen pathology. Addition of ACK2 to treosulfan conditioning did not enhance engraftment. Our data suggests that pretransplant conditioning with treosulfan alone may allow sufficient erythroid engraftment to reverse manifestations of SCD, with clinical application as a preparative regimen in SCD patients undergoing gene-modified autologous HSCT.


Assuntos
Anemia Falciforme/terapia , Transplante de Medula Óssea/métodos , Bussulfano/análogos & derivados , Condicionamento Pré-Transplante/métodos , Animais , Anticorpos/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Bussulfano/uso terapêutico , Modelos Animais de Doenças , Sobrevivência de Enxerto , Camundongos , Proteínas Proto-Oncogênicas c-kit/imunologia , Resultado do Tratamento
10.
Stem Cell Reports ; 9(5): 1604-1617, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141234

RESUMO

Pluripotent stem cells (PSCs) deficient for microRNAs (miRNAs), such as Dgcr8-/- or Dicer-/- embryonic stem cells (ESCs), contain no mature miRNA and cannot differentiate into somatic cells. How miRNA deficiency causes differentiation defects remains poorly understood. Here, we report that miR-302 is sufficient to enable neural differentiation of differentiation-incompetent Dgcr8-/- ESCs. Our data showed that miR-302 directly suppresses the tumor suppressor p53, which is modestly upregulated in Dgcr8-/- ESCs and serves as a barrier restricting neural differentiation. We demonstrated that direct inactivation of p53 by SV40 large T antigen, a short hairpin RNA against Trp53, or genetic ablation of Trp53 in Dgcr8-/- PSCs enables neural differentiation, while activation of p53 by the MDM2 inhibitor nutlin-3a in wild-type ESCs inhibits neural differentiation. Together, we demonstrate that a major function of miRNAs in neural differentiation is suppression of p53 and that modest activation of p53 blocks neural differentiation of miRNA-deficient PSCs.


Assuntos
MicroRNAs/genética , Neurogênese , Células-Tronco Pluripotentes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Camundongos , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Proteína Supressora de Tumor p53/genética
11.
J Am Soc Nephrol ; 28(8): 2443-2458, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28348063

RESUMO

Sickle cell disease (SCD)-associated nephropathy is a major source of morbidity and mortality in patients because of the lack of efficacious treatments targeting renal manifestations of the disease. Here, we describe a long-term treatment strategy with the selective endothelin-A receptor (ETA) antagonist, ambrisentan, designed to interfere with the development of nephropathy in a humanized mouse model of SCD. Ambrisentan preserved GFR at the level of nondisease controls and prevented the development of proteinuria, albuminuria, and nephrinuria. Microscopy studies demonstrated prevention of podocyte loss and structural alterations, the absence of vascular congestion, and attenuation of glomerulosclerosis in treated mice. Studies in isolated glomeruli showed that treatment reduced inflammation and oxidative stress. At the level of renal tubules, ambrisentan treatment prevented the increased excretion of urinary tubular injury biomarkers. Additionally, the treatment strategy prevented tubular brush border loss, diminished tubular iron deposition, blocked the development of interstitial fibrosis, and prevented immune cell infiltration. Furthermore, the prevention of albuminuria in treated mice was associated with preservation of cortical megalin expression. In a separate series of identical experiments, combined ETA and ETB receptor antagonism provided only some of the protection observed with ambrisentan, highlighting the importance of exclusively targeting the ETA receptor in SCD. Our results demonstrate that ambrisentan treatment provides robust protection from diverse renal pathologies in SCD mice, and suggest that long-term ETA receptor antagonism may provide a strategy for the prevention of renal complications of SCD.


Assuntos
Anemia Falciforme/complicações , Antagonistas do Receptor de Endotelina A/uso terapêutico , Nefropatias/etiologia , Nefropatias/prevenção & controle , Fenilpropionatos/uso terapêutico , Piridazinas/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Fatores de Tempo
12.
Stem Cells Transl Med ; 6(4): 1168-1177, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233474

RESUMO

Recruitment of neutrophils and monocytes/macrophages to the site of vascular injury is mediated by binding of chemoattractants to interleukin (IL) 8 receptors RA and RB (IL8RA/B) C-C chemokine receptors (CCR) 2 and 5 expressed on neutrophil and monocyte/macrophage membranes. Endothelial cells (ECs) derived from rat-induced pluripotent stem cells (RiPS) were transduced with adenovirus containing cDNA of IL8RA/B and/or CCR2/5. We hypothesized that RiPS-ECs overexpressing IL8RA/B (RiPS-IL8RA/B-ECs), CCR2/5 (RiPS-CCR2/5-ECs), or both receptors (RiPS-IL8RA/B+CCR2/5-ECs) will inhibit inflammatory responses and neointima formation in balloon-injured rat carotid artery. Twelve-week-old male Sprague-Dawley rats underwent balloon injury of the right carotid artery and intravenous infusion of (a) saline vehicle, (b) control RiPS-Null-ECs (ECs transduced with empty virus), (c) RiPS-IL8RA/B-ECs, (d) RiPS-CCR2/5-ECs, or (e) RiPS-IL8RA/B+CCR2/5-ECs. Inflammatory mediator expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 hours postinjury by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Neointima formation was assessed at 14 days postinjury. RiPS-ECs expressing the IL8RA/B or CCR2/5 homing device targeted the injured arteries and decreased injury-induced inflammatory cytokine expression, neutrophil/macrophage infiltration, and neointima formation. Transfused RiPS-ECs overexpressing IL8RA/B and/or CCR2/5 prevented inflammatory responses and neointima formation after vascular injury. Targeted delivery of iPS-ECs with a homing device to inflammatory mediators in injured arteries provides a novel strategy for the treatment of cardiovascular diseases. Stem Cells Translational Medicine 2017;6:1168-1177.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Receptores de Interleucina-8/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Neutrófilos/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Basic Res Cardiol ; 112(2): 19, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28238121

RESUMO

In the failing heart, iNOS is expressed by both macrophages and cardiomyocytes. We hypothesized that inflammatory cell-localized iNOS exacerbates left ventricular (LV) remodeling. Wild-type (WT) C57BL/6 mice underwent total body irradiation and reconstitution with bone marrow from iNOS-/- mice (iNOS-/-c) or WT mice (WTc). Chimeric mice underwent coronary ligation to induce large infarction and ischemic heart failure (HF), or sham surgery. After 28 days, as compared with WTc sham mice, WTc HF mice exhibited significant (p < 0.05) mortality, LV dysfunction, hypertrophy, fibrosis, oxidative/nitrative stress, inflammatory activation, and iNOS upregulation. These mice also exhibited a ~twofold increase in circulating Ly6Chi pro-inflammatory monocytes, and ~sevenfold higher cardiac M1 macrophages, which were primarily CCR2- cells. In contrast, as compared with WTc HF mice, iNOS-/-c HF mice exhibited significantly improved survival, LV function, hypertrophy, fibrosis, oxidative/nitrative stress, and inflammatory activation, without differences in overall cardiac iNOS expression. Moreover, iNOS-/-c HF mice exhibited lower circulating Ly6Chi monocytes, and augmented cardiac M2 macrophages, but with greater infiltrating monocyte-derived CCR2+ macrophages vs. WTc HF mice. Lastly, upon cell-to-cell contact with naïve cardiomyocytes, peritoneal macrophages from WT HF mice depressed contraction, and augmented cardiomyocyte oxygen free radicals and peroxynitrite. These effects were not observed upon contact with macrophages from iNOS-/- HF mice. We conclude that leukocyte iNOS is obligatory for local and systemic inflammatory activation and cardiac remodeling in ischemic HF. Activated macrophages in HF may directly induce cardiomyocyte contractile dysfunction and oxidant stress upon cell-to-cell contact; this juxtacrine response requires macrophage-localized iNOS.


Assuntos
Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Remodelação Ventricular/fisiologia , Animais , Western Blotting , Ecocardiografia , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Imuno-Histoquímica , Isquemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Cell Rep ; 16(12): 3138-3145, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653680

RESUMO

One critical event in reprogramming to pluripotency is erasure of the somatic transcriptional program of starting cells. Here, we present the proof of principle of a strategy for reprogramming to pluripotency facilitated by small molecules that interfere with the somatic transcriptional memory. We show that mild chemical targeting of the acetyllysine-binding pockets of the BET bromodomains, the transcriptional bookmarking domains, robustly enhances reprogramming. Furthermore, we show that chemical targeting of the transcriptional bookmarking BET bromodomains downregulates or turns off the expression of somatic genes in both naive and reprogramming fibroblasts. Chemical blocking of the BET bromodomains also results in loss of fibroblast morphology early in reprogramming. We therefore experimentally demonstrate that cell fate conversion can be achieved by chemically targeting the transcriptional bookmarking BET bromodomains responsible for transcriptional memory.


Assuntos
Azepinas/farmacologia , Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
15.
Sci Rep ; 6: 30422, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27460639

RESUMO

CRISPR/Cas enhanced correction of the sickle cell disease (SCD) genetic defect in patient-specific induced Pluripotent Stem Cells (iPSCs) provides a potential gene therapy for this debilitating disease. An advantage of this approach is that corrected iPSCs that are free of off-target modifications can be identified before differentiating the cells into hematopoietic progenitors for transplantation. In order for this approach to be practical, iPSC generation must be rapid and efficient. Therefore, we developed a novel helper-dependent adenovirus/Epstein-Barr virus (HDAd/EBV) hybrid reprogramming vector, rCLAE-R6, that delivers six reprogramming factors episomally. HDAd/EBV transduction of keratinocytes from SCD patients resulted in footprint-free iPSCs with high efficiency. Subsequently, the sickle mutation was corrected by delivering CRISPR/Cas9 with adenovirus followed by nucleoporation with a 70 nt single-stranded oligodeoxynucleotide (ssODN) correction template. Correction efficiencies of up to 67.9% (ß(A)/[ß(S)+ß(A)]) were obtained. Whole-genome sequencing (WGS) of corrected iPSC lines demonstrated no CRISPR/Cas modifications in 1467 potential off-target sites and no modifications in tumor suppressor genes or other genes associated with pathologies. These results demonstrate that adenoviral delivery of reprogramming factors and CRISPR/Cas provides a rapid and efficient method of deriving gene-corrected, patient-specific iPSCs for therapeutic applications.


Assuntos
Adenoviridae/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Sistemas CRISPR-Cas/genética , Terapia Genética , Vetores Genéticos/metabolismo , Vírus Auxiliares/metabolismo , Sequência de Bases , Linhagem Celular , Herpesvirus Humano 4 , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
16.
Front Oncol ; 6: 166, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458571

RESUMO

Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68-100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal RBCs without toxicity. Collectively, these data unveil two hitherto unrecognized findings: hemoglobin SS knockin mice appear to present a natural barrier to melanoma tumorigenesis while SSRBCs demonstrate therapeutic function as a vehicle for enhancing the oncolytic effect of free reovirus against established melanoma.

17.
EMBO Rep ; 17(6): 887-900, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27118388

RESUMO

Antisense RNAs regulate the transcription and translation of the corresponding sense genes. Here, we report that an antisense RNA, AS-RBM15, is transcribed in the opposite direction within exon 1 of RBM15 RBM15 is a regulator of megakaryocyte (MK) differentiation and is also involved in a chromosome translocation t(1;22) in acute megakaryocytic leukemia. MK terminal differentiation is enhanced by up-regulation of AS-RBM15 expression and attenuated by AS-RBM15 knockdown. At the molecular level, AS-RBM15 enhances RBM15 protein translation in a CAP-dependent manner. The region of the antisense AS-RBM15 RNA, which overlaps with the 5'UTR of RBM15, is sufficient for the up-regulation of RBM15 protein translation. In addition, we find that transcription of both RBM15 and AS-RBM15 is activated by the transcription factor RUNX1 and repressed by RUNX1-ETO, a leukemic fusion protein. Therefore, AS-RBM15 is a regulator of megakaryocyte differentiation and may play a regulatory role in leukemogenesis.


Assuntos
Diferenciação Celular/genética , Megacariócitos/citologia , Megacariócitos/metabolismo , RNA Antissenso , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Biossíntese de Proteínas , Transporte Proteico , Deleção de Sequência , Transcrição Gênica
18.
Nat Commun ; 7: 10869, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947130

RESUMO

It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, it is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming and show that mitosis may be a driving force of reprogramming.


Assuntos
Núcleo Celular/metabolismo , Reprogramação Celular , Mitose , Proteínas de Ligação a RNA/metabolismo , Acetilação , Núcleo Celular/genética , Histonas/genética , Histonas/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição
19.
Br J Pharmacol ; 173(2): 386-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26561980

RESUMO

BACKGROUND AND PURPOSE: Endothelin-1 (ET-1) is increased in patients with sickle cell disease and may contribute to the development of sickle cell nephropathy. The current study was designed to determine whether ET-1 acting via the ETA receptor contributes to renal injury in a mouse model of sickle cell disease. EXPERIMENTAL APPROACH: Adult, humanized HbSS (homozygous for sickle Hb) mice had increased ET-1 mRNA expression in both the cortex and the glomeruli compared with mice heterozygous for sickle and Hb A (HbAS controls). In the renal cortex, ETA receptor mRNA expression was also elevated in HbSS (sickle) mice although ETB receptor mRNA expression was unchanged. Ligand binding assays confirmed that sickle mice had increased ETA receptors in the renal vascular tissue when compared with control mice. KEY RESULTS: In response to PKC stimulation, reactive oxygen species production by isolated glomeruli from HbSS sickle mice was increased compared with that from HbSA controls, an effect that was prevented by 1 week in vivo treatment with the selective ETA antagonist, ABT-627. Protein and nephrin excretion were both elevated in sickle mice, effects that were also significantly attenuated by ABT-627. Finally, ETA receptor antagonism caused a significant reduction in mRNA expression of NADPH oxidase subunits, which may contribute to nephropathy in sickle cell disease. CONCLUSIONS AND IMPLICATIONS: These data support a novel role for ET-1 in the progression of sickle nephropathy, specifically via the ETA receptor, and suggest a potential role for ETA receptor antagonism in a treatment strategy.


Assuntos
Injúria Renal Aguda/metabolismo , Anemia Falciforme/metabolismo , Progressão da Doença , Endotelina-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/etiologia , Anemia Falciforme/complicações , Animais , Relação Dose-Resposta a Droga , Endotelina-1/farmacologia , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Endotelina A/agonistas , Receptor de Endotelina A/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(1): E51-60, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699484

RESUMO

Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Ubiquitina Tiolesterase/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Contagem de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Endopeptidases/genética , Endopeptidases/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Letais , Hematopoese/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/fisiologia , Transativadores , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA