Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111354

RESUMO

Quercetin derivatives have already shown their anti-inflammatory potential, inhibiting essential enzymes involved in this process. Among diverse pro-inflammatory toxins from snake venoms, phospholipase A2 is one of the most abundant in some species, such as Crotalus durissus terrificus and Bothrops jararacussu from the Viperidae family. These enzymes can induce the inflammatory process through hydrolysis at the sn-2 position of glycerophospholipids. Hence, elucidating the main residues involved in the biological effects of these macromolecules can help to identify potential compounds with inhibitory activity. In silico tools were used in this study to evaluate the potential of quercetin methylated derivatives in the inhibition of bothropstoxin I (BthTX-I) and II (BthTX-II) from Bothrops jararacussu and phospholipase A2 from Crotalus durissus terrificus. The use of a transitional analogous and two classical inhibitors of phospholipase A2 guided this work to find the role of residues involved in the phospholipid anchoring and the subsequent development of the inflammatory process. First, main cavities were studied, revealing the best regions to be inhibited by a compound. Focusing on these regions, molecular docking assays were made to show main interactions between each compound. Results reveal that analogue and inhibitors, Varespladib (Var) and p-bromophenacyl bromide (BPB), guided quercetins derivatives analysis, revealing that Leu2, Phe5, Tyr28, glycine in the calcium-binding loop, His48, Asp49 of BthTX-II and Cdtspla2 were the main residues to be inhibited. 3MQ exhibited great interaction with the active site, similar to Var results, while Q anchored better in the BthTX-II active site. However, strong interactions in the C-terminal region, highlighting His120, seem to be crucial to decreasing contacts with phospholipid and BthTX-II. Hence, quercetin derivatives anchor differently with each toxin and further in vitro and in vivo studies are essential to elucidate these data.

2.
Chem Res Toxicol ; 36(4): 570-582, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537067

RESUMO

The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.


Assuntos
Diterpenos do Tipo Caurano , Peroxirredoxinas , Antibacterianos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Canamicina , Bactérias
3.
Pharmaceutics ; 14(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35214100

RESUMO

(1) Background: Gallic acid (GA) has been characterized as an effective anti-inflammatory, antivenom, and promising drug for therapeutic use. (2/3) Methods and Results: GA was identified from ethanolic extract of fresh pitanga (Eugenia uniflora) leaves, which was identified using commercial GA. Commercial GA neutralized the enzymatic activity of secretory PLA2 (sPLA2) by inhibiting the active site and inducing changes in the secondary structure of the enzyme. Pharmacological edema assays showed that GA strongly decreased edema when the compound was previously incubated with sPLA2. However, prior treatment of GA (30 min before) significantly increased the edema and myotoxicity induced by sPLA2. The molecular docking results of GA with platelet-acetylhydrolase (PAF-AH) and acetylcholinesterase reveal that this compound was able to interact with the active site of both molecules, inhibiting the hydrolysis of platelet-activating factor (PAF) and acetylcholine (ACh). (4) Conclusion: GA has a great potential application; however, our results show that this compound can also induce adverse effects in previously treated animals. Additionally, the increased edema and myotoxicity observed experimentally in GA-treated animals may be due to the inhibition of PAF-AH and Acetylcholinesterase.

4.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202406

RESUMO

Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.

5.
Toxicon ; 190: 31-38, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33307108

RESUMO

The envenomation caused by the Bothrops pauloensis snake leads to severe local and systemic effects including acute kidney injury. In this study, we investigated the renal effects by phospholipases A2 (PLA2s), divided into two main subgroups, Asp-49 and Lys-49, isolated from the Bothrops pauloensis snake venom (BpV) in isolated rat kidney system. Both PLA2s (3 µg/mL), added alone to the perfusion system and analyzed for 120 min, had significant effects on isolated rat kidney. Asp-49 reduced Glomerular Filtration Rate (GFR) at 60, 90 and 120 min, and the percentage of total tubular sodium transport (%TNa+) and potassium transport (%TK+) at 120 min. Lys-49 increased Perfusion Pressure (PP) at 120 min and reduced GFR, %TNa+ and the percentage of total tubular chloride transport (%TCl-) at 60, 90 and 120 min. Cytokine release in the kidney tissues were increased with Asp-49 PLA2 (IL-10) and Lys-49 PLA2 (TNF-α, IL-1ß, IL-10). Both increased MPO activity. Asp-49 PLA2 decreased Glutathione (GSH) and increased nitrite levels, while Lys-49 PLA2 increased Malondialdehyde (MDA), GSH and nitrite levels. Histological analysis of the perfused kidneys revealed the presence of glomerular degeneration and atrophy, deposit of proteinaceous material in Bowman's space and intratubular with both PLA2s. These findings indicated that both PLA2s modified the functional parameters in an isolated perfused kidney model with increased oxidative stress and cytokine release. PLA2s are one of the components at high concentration in BpV and our results provide important knowledge about their involvement with the nephrotoxic mechanism.


Assuntos
Injúria Renal Aguda/metabolismo , Venenos de Crotalídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfolipases A2/metabolismo , Animais , Bothrops , Citocinas , Rim , Glomérulos Renais , Ratos , Venenos de Serpentes
6.
Artigo em Inglês | MEDLINE | ID: mdl-32850492

RESUMO

Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that causes systemic paracoccidioidomycosis, a granulomatous disease. The massive production of reactive oxygen species (ROS) by the host's cellular immune response is an essential strategy to restrain the fungal growth. Among the ROS, the hydroperoxides are very toxic antimicrobial compounds and fungal peroxidases are part of the pathogen neutralizing antioxidant arsenal against the host's defense. Among them, the peroxiredoxins are highlighted, since some estimates suggest that they are capable of decomposing most of the hydroperoxides generated in the host's mitochondria and cytosol. We presently characterized a unique P. brasiliensis 1-Cys peroxiredoxin (PbPrx1). Our results reveal that it can decompose hydrogen peroxide and organic hydroperoxides very efficiently. We showed that dithiolic, but not monothiolic compounds or heterologous thioredoxin reductant systems, were able to retain the enzyme activity. Structural analysis revealed that PbPrx1 has an α/ß structure that is similar to the 1-Cys secondary structures described to date and that the quaternary conformation is represented by a dimer, independently of the redox state. We investigated the PbPrx1 localization using confocal microscopy, fluorescence-activated cell sorter, and immunoblot, and the results suggested that it localizes both in the cytoplasm and at the cell wall of the yeast and mycelial forms of P. brasiliensis, as well as in the yeast mitochondria. Our present results point to a possible role of this unique P. brasiliensis 1-Cys Prx1 in the fungal antioxidant defense mechanisms.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Proteínas de Saccharomyces cerevisiae , Humanos , Oxirredução , Peroxidases/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biotechnol Lett ; 42(11): 2333-2344, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638188

RESUMO

Acute lymphoblastic leukaemia (ALL) affects lymphoblastic cells and is the most common neoplasm during childhood. Among the pharmaceuticals used in the treatment protocols for ALL, Asparaginase (ASNase) from Escherichia coli (EcAII) is an essential biodrug. Meanwhile, the use of EcAII in neoplastic treatments causes several side effects, such as immunological reactions, hepatotoxicity, neurotoxicity, depression, and coagulation abnormalities. Commercial EcAII is expressed as a recombinant protein, similar to novel enzymes from different organisms; in fact, EcAII is a tetrameric enzyme with high molecular weight (140 kDa), and its overexpression in recombinant systems often results in bacterial cell death or the production of aggregated or inactive EcAII protein, which is related to the formation of inclusion bodies. On the other hand, several commercial expression strains have been developed to overcome these expression issues, but no studies on a systematic evaluation of the E. coli strains aiming to express recombinant asparaginases have been performed to date. In this study, we evaluated eleven expression strains at a low temperature (16 °C) with different characteristics to determine which is the most appropriate for asparaginase expression; recombinant wild-type EcAII (rEcAII) was used as a prototype enzyme and the secondary structure content, oligomeric state, aggregation and specific activity of the enzymes were assessed. Structural analysis suggested that a correctly folded tetrameric rEcAII was obtained using ArcticExpress (DE3), a strain that co-express chaperonins, while all other strains produced poorly folded proteins. Additionally, the enzymatic assays showed high specific activity of proteins expressed by ArcticExpress (DE3) when compared to the other strains used in this work.


Assuntos
Asparaginase/química , Asparaginase/metabolismo , Escherichia coli/enzimologia , Asparaginase/genética , Cromatografia em Gel , Dicroísmo Circular , Temperatura Baixa , Citosol/metabolismo , Escherichia coli/química , Escherichia coli/classificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Estrutura Secundária de Proteína
8.
Appl Microbiol Biotechnol ; 104(12): 5477-5492, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307572

RESUMO

The pathogen Xylella fastidiosa belongs to the Xanthomonadaceae family, a large group of Gram-negative bacteria that cause diseases in many economically important crops. A predicted gene, annotated as glutaredoxin-like protein (glp), was found to be highly conserved among the genomes of different genera within this family and highly expressed in X. fastidiosa. Analysis of the GLP protein sequences revealed three protein domains: one similar to monothiol glutaredoxins (Grx), an Fe-S cluster and a thiosulfate sulfurtransferase/rhodanese domain (Tst/Rho), which is generally involved in sulfur metabolism and cyanide detoxification. To characterize the biochemical properties of GLP, we expressed and purified the X. fastidiosa recombinant GLP enzyme. Grx activity and Fe-S cluster formation were not observed, while an evaluation of Tst/Rho enzymatic activity revealed that GLP can detoxify cyanide and transfer inorganic sulfur to acceptor molecules in vitro. The biological activity of GLP relies on the cysteine residues in the Grx and Tst/Rho domains (Cys33 and Cys266, respectively), and structural analysis showed that GLP and GLPC266S were able to form high molecular weight oligomers (> 600 kDa), while replacement of Cys33 with Ser destabilized the quaternary structure. In vivo heterologous enzyme expression experiments in Escherichia coli revealed that GLP can protect bacteria against high concentrations of cyanide and hydrogen peroxide. Finally, phylogenetic analysis showed that homologous glp genes are distributed across Gram-negative bacterial families with conservation of the N- to C-domain order. However, no eukaryotic organism contains this enzyme. Altogether, these results suggest that GLP is an important enzyme with cyanide-decomposing and sulfurtransferase functions in bacteria, whose presence in eukaryotes we could not observe, representing a promising biological target for new pharmaceuticals.


Assuntos
Cianetos/metabolismo , Glutarredoxinas/metabolismo , Estresse Oxidativo , Sulfurtransferases/metabolismo , Xylella/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutarredoxinas/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Sulfurtransferases/genética , Tiossulfato Sulfurtransferase/metabolismo
9.
PLoS One ; 15(2): e0229657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106235

RESUMO

Plasma in several organisms has components that promote resistance to envenomation by inhibiting specific proteins from snake venoms, such as phospholipases A2 (PLA2s). The major hypothesis for inhibitor's presence would be the protection against self-envenomation in venomous snakes, but the occurrence of inhibitors in non-venomous snakes and other animals has opened new perspectives for this molecule. Thus, this study showed for the first time the structural and functional characterization of the PLA2 inhibitor from the Boa constrictor serum (BoaγPLI), a non-venomous snake that dwells extensively the Brazilian territory. Therefore, the inhibitor was isolated from B. constrictor serum, with 0.63% of recovery. SDS-PAGE showed a band at ~25 kDa under reducing conditions and ~20 kDa under non-reducing conditions. Chromatographic analyses showed the presence of oligomers formed by BoaγPLI. Primary structure of BoaγPLI suggested an estimated molecular mass of 22 kDa. When BoaγPLI was incubated with Asp-49 and Lys-49 PLA2 there was no severe change in its dichroism spectrum, suggesting a non-covalent interaction. The enzymatic assay showed a dose-dependent inhibition, up to 48.2%, when BoaγPLI was incubated with Asp-49 PLA2, since Lys-49 PLA2 has a lack of enzymatic activity. The edematogenic and myotoxic effects of PLA2s were also inhibited by BoaγPLI. In summary, the present work provides new insights into inhibitors from non-venomous snakes, which possess PLIs in their plasma, although the contact with venom is unlikely.


Assuntos
Boidae/sangue , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Inibidores de Fosfolipase A2/sangue , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/química , Fosfolipases A2 do Grupo IV/química , Peso Molecular , Inibidores de Fosfolipase A2/química , Domínios e Motivos de Interação entre Proteínas , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/química , Espectrometria de Massas em Tandem
10.
Molecules ; 25(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936688

RESUMO

Bioaffinity capturing of molecules allows the discovery of bioactive compounds and decreases the need for various stages in the natural compound isolation process. Despite the high selectivity of this technique, the screening and identification methodology depends on the presence of a protein to capture potential ligands. However, some proteins, such as snake secretory phospholipase A2 (sPLA2), have never been investigated using this approach. The purpose of this study was to evaluate the use of a new method for screening natural compounds using a bioaffinity-guided ultrafiltration method on Crotalus durissus terrificus sPLA2 followed by HPLC-MS to identify the compounds, and this method could be used to discover new anti-inflammatory compounds from the various organisms originating from biodiversity. Different extracts were selected to evaluate their ability to inhibit sPLA2 activity. The extracts were incubated with sPLA2 and the resulting mixture was ultrafiltrated to elute unbound components. The resulting compounds were identified by HPLC-MS. We identified hispidulin as one of the components present in the Moquiniastrum floribundum leaf and evaluated the ability of this isolated compound to neutralize the inflammatory activity of sPLA2 from Crotalus durissus terrificus.


Assuntos
Produtos Biológicos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Fosfolipases A2 Secretórias/antagonistas & inibidores , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão , Crotalus/genética , Inibidores Enzimáticos/química , Ligantes , Fosfolipases A2 Secretórias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA