Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0288262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428774

RESUMO

Establishing links between breeding, stopover, and wintering sites for migratory species is important for their effective conservation and management. Isotopic assignment methods used to create these connections rely on the use of predictable, established relationships between the isotopic composition of environmental hydrogen and that of the non-exchangeable hydrogen in animal tissues, often in the form of a calibration equation relating feather (δ2Hf) values derived from known-origin individuals and amount-weighted long-term precipitation (δ2Hp) data. The efficacy of assigning waterfowl to moult origin using stable isotopes depends on the accuracy of these relationships and their statistical uncertainty. Most current calibrations for terrestrial species in North America are done using amount-weighted mean growing-season δ2Hp values, but the calibration relationship is less clear for aquatic and semi-aquatic species. Our objective was to critically evaluate current methods used to calibrate δ2Hp isoscapes to predicted δ2Hf values for waterfowl. Specifically, we evaluated the strength of the relationships between δ2Hp values from three commonly used isoscapes and known-origin δ2Hf values three published datasets and one collected as part of this study, also grouping these data into foraging guilds (dabbling vs diving ducks). We then evaluated the performance of assignments using these calibrations by applying a cross-validation procedure. It remains unclear if any of the tested δ2Hp isoscapes better predict surface water inputs into food webs for foraging waterfowl. We found only marginal differences in the performance of the tested known-origin datasets, where the combined foraging-guild-specific datasets showed lower assignment precision and model fit compared to data for individual species. We recommend the use of the more conservative combined foraging-guild-specific datasets to assign geographic origin for all dabbling duck species. Refining these relationships is important for improved waterfowl management and contributes to a better understanding of the limitations of assignment methods when using the isotope approach.


Assuntos
Migração Animal , Plumas , Animais , Plumas/química , Isótopos/análise , Hidrogênio , Estações do Ano , Patos
2.
PLoS One ; 18(3): e0282874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920978

RESUMO

The genetic composition of mallards in eastern North America has been changed by release of domestically-raised, game-farm mallards to supplement wild populations for hunting. We sampled 296 hatch-year mallards harvested in northwestern Ohio, October-December 2019. The aim was to determine their genetic ancestry and geographic origin to understand the geographic extent of game-farm mallard introgression into wild populations in more westward regions of North America. We used molecular analysis to detect that 35% of samples were pure wild mallard, 12% were early generation hybrids between wild and game-farm mallards (i.e., F1-F3), and the remaining 53% of samples were assigned as part of a hybrid swarm. Percentage of individuals in our study with some form of hybridization with game-farm mallard (65%) was greater than previously detected farther south in the mid-continent (~4%), but less than the Atlantic coast of North America (~ 92%). Stable isotope analysis using δ2Hf suggested that pure wild mallards originated from areas farther north and west than hybrid mallards. More specifically, 17% of all Ohio samples had δ2Hf consistent with more western origins in the prairies, parkland, or boreal regions of the mid-continent of North America, with 55%, 35%, and 10% of these being genetically wild, hybrid swarm, and F3, respectively. We conclude that continued game-farm introgression into wild mallards is not isolated to the eastern population of mallards in North America, and may be increasing and more widespread than previously detected. Mallards in our study had greater incidence of game-farm hybridization than other locales in the mid-continent but less than eastern North American regions suggesting further need to understand game-farm mallard genetic variation and movement across the continent.


Assuntos
Genética Populacional , Hibridização Genética , Humanos , Animais , Ohio , América do Norte , Patos/genética
3.
Sci Total Environ ; 738: 139724, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531589

RESUMO

Common loons (Gavia immer) are top predators that depend on lake food webs to successfully fledge chicks. Common loon reproductive success is consequently recognized as an important indicator of aquatic ecosystem health. Existing evidence points to long-term declines in productivity in portions of the common loon range; however, the reason for these declines is not well understood. Our objectives were to define underlying baseline patterns of loon reproductive success in Ontario, Canada, and to identify drivers of temporal changes in loon productivity. We analyzed 38 years of reproductive data from over 1500 lakes using data from the Canadian Lakes Loon Survey, a citizen science loon monitoring program managed by Birds Canada that has run annually in Ontario since 1981. Overall, we estimated a declining trend in common loon reproductive success of -0.10 six-week-old young per pair per year in Ontario between 1981 and 2018. We assessed the influence of 14 factors on loon reproductive success. We identified low pH and associated higher mercury as factors linked to loon productivity declines. We also demonstrated that lake area, longitude, and April temperatures can predict the number of six-week-old young per pair per year. We hypothesize that climate change-induced stress, acting through multiple interacting pathways involving mercury acidity, fish abundance, lake size, and geographic location, may account for declining loon productivity. These results will be important for focusing future research and conservation efforts to help understand and mitigate threats to common loon populations.


Assuntos
Ecossistema , Mercúrio/análise , Animais , Canadá , Peixes , Lagos , Ontário
4.
Wetlands (Wilmington) ; 39(6): 1357-1366, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-34326565

RESUMO

Traditionally, ecosystem monitoring, conservation, and restoration have been conducted in a piecemeal manner at the local scale without regional landscape context. However, scientifically driven conservation and restoration decisions benefit greatly when they are based on regionally determined benchmarks and goals. Unfortunately, required data sets rarely exist for regionally important ecosystems. Because of early recognition of the extreme ecological importance of Laurentian Great Lakes coastal wetlands, and the extensive degradation that had already occurred, significant investments in coastal wetland research, protection, and restoration have been made in recent decades and continue today. Continued and refined assessment of wetland condition and trends, and the evaluation of restoration practices are all essential to ensuring the success of these investments. To provide wetland managers and decision makers throughout the Laurentian Great Lakes basin with the optimal tools and data needed to make scientifically-based decisions, our regional team of Great Lakes wetland scientists developed standardized methods and indicators used for assessing wetland condition. From a landscape perspective, at the Laurentian Great Lakes ecosystem scale, we established a stratified random-site-selection process to monitor birds, anurans, fish, macroinvertebrates, vegetation, and physicochemical conditions of coastal wetlands in the US and Canada. Monitoring of approximately 200 wetlands per year began in 2011 as the Great Lakes Coastal Wetland Monitoring Program. In this paper, we describe the development, delivery, and expected results of this ongoing international, multi-disciplinary, multi-stakeholder, landscape-scale monitoring program as a case example of successful application of landscape conservation design.

5.
J Environ Manage ; 212: 160-168, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428650

RESUMO

Wetlands conserved using water level manipulation, cattle exclusion, naturalization of uplands, and other techniques under the North American Waterfowl Management Plan ("conservation project wetlands") are important for ducks, geese, and swans ("waterfowl"). However, the assumption that conservation actions for waterfowl also benefit other wildlife is rarely quantified. We modeled detection and occupancy of species at sites within 42 conservation project wetlands compared to sites within 52 similar nearby unmanaged wetlands throughout southern Ontario, Canada, and small portions of the adjacent U.S., using citizen science data collected by Bird Studies Canada's Great Lakes Marsh Monitoring Program, including 2 waterfowl and 13 non-waterfowl marsh-breeding bird species (n = 413 sites) and 7 marsh-breeding frog species (n = 191 sites). Occupancy was significantly greater at conservation project sites compared to unmanaged sites in 7 of 15 (47%) bird species and 3 of 7 (43%) frog species, with occupancy being higher by a difference of 0.12-0.38 across species. Notably, occupancy of priority conservation concern or at-risk Black Tern (Chlidonias niger), Common Gallinule (Gallinula galeata), Least Bittern (Ixobrychus exilis), Sora (Porzana carolina), and Western Chorus Frog (Pseudacris triseriata) was significantly higher at conservation project sites compared to unmanaged sites. The results demonstrate the utility of citizen science to inform wetland conservation, and suggest that actions under the North American Waterfowl Management Plan are effective for conserving non-waterfowl species.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Animais , Anuros , Aves , Bovinos , Espécies em Perigo de Extinção , Ontário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA