Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225425

RESUMO

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema , Variação Genética
2.
Int J Biometeorol ; 68(4): 761-775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285109

RESUMO

Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.


Assuntos
Fotoperíodo , Folhas de Planta , Temperatura , Estações do Ano , Folhas de Planta/fisiologia , Fenótipo , Plantas , Mudança Climática
4.
Ann Bot ; 129(7): 857-868, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670810

RESUMO

BACKGROUND AND AIMS: Habitat degradation and landscape fragmentation dramatically lower population sizes of rare plant species. Decreasing population sizes may, in turn, negatively affect genetic diversity and reproductive fitness, which can ultimately lead to local extinction of populations. Although such extinction vortex dynamics have been postulated in theory and modelling for decades, empirical evidence from local extinctions of plant populations is scarce. In particular, comparisons between current vs. historical genetic diversity and differentiation are lacking despite their potential to guide conservation management. METHODS: We studied the population genetic signatures of the local extinction of Biscutella laevigata subsp. gracilis populations in Central Germany. We used microsatellites to genotype individuals from 15 current populations, one ex situ population, and 81 herbarium samples from five extant and 22 extinct populations. In the current populations, we recorded population size and fitness proxies, collected seeds for a germination trial and conducted a vegetation survey. The latter served as a surrogate for habitat conditions to study how habitat dissimilarity affects functional connectivity among the current populations. KEY RESULTS: Bayesian clustering revealed similar gene pool distribution in current and historical samples but also indicated that a distinct genetic cluster was significantly associated with extinction probability. Gene flow was affected by both the spatial distance and floristic composition of population sites, highlighting the potential of floristic composition as a powerful predictor of functional connectivity which may promote decision-making for reintroduction measures. For an extinct population, we found a negative relationship between sampling year and heterozygosity. Inbreeding negatively affected germination. CONCLUSIONS: Our study illustrates the usefulness of historical DNA to study extinction vortices in threatened species. Our novel combination of classical population genetics together with data from herbarium specimens, an ex situ population and a germination trial underlines the need for genetic rescue measures to prevent extinction of B. laevigata in Central Germany.


Assuntos
Fluxo Gênico , Genética Populacional , Teorema de Bayes , Conservação dos Recursos Naturais , Extinção Biológica , Variação Genética , Endogamia , Densidade Demográfica
5.
New Phytol ; 235(6): 2199-2210, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35762815

RESUMO

Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.


Assuntos
Mudança Climática , Reprodução , Biodiversidade , Flores , Plantas , Estações do Ano
6.
BMC Ecol Evol ; 21(1): 200, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740329

RESUMO

BACKGROUND: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked. One such important facet of biodiversity is within-species genetic diversity, which is fundamental to population fitness and adaptation to environmental change. Also the diversity of arbuscular mycorrhizal fungi (AMF), obligate root symbionts that regulate nutrient and carbon cycles, potentially plays a vital role in mediating ecosystem restoration outcome. In this study, we investigated the relative contribution of intraspecific population genetic diversity, AMF diversity, and their interaction, to population recovery of Succisa pratensis, a key species of nutrient poor semi natural grasslands. We genotyped 180 individuals from 12 populations of S. pratensis and characterized AMF composition in their roots, using microsatellite markers and next generation amplicon sequencing, respectively. We also investigated whether the genetic makeup of the host plant species can structure the composition of root-inhabiting AMF communities. RESULTS: Our analysis revealed that population allelic richness was strongly positively correlated to relative population growth, whereas AMF richness and its interaction with population genetic diversity did not significantly contribute. The variation partitioning analysis showed that, after accounting for soil and spatial variables, the plant genetic makeup explained a small but significant part of the unique variation in AMF communities. CONCLUSIONS: Our results confirm that population genetic diversity can contribute to population recovery, highlighting the importance of within-species genetic diversity for the success of restoration. We could not find evidence, however, that population recovery benefits from the presence of more diverse AMF communities. Our analysis also showed that the genetic makeup of the host plant structured root-inhabiting AMF communities, suggesting that the plant genetic makeup may be linked to genes that control symbiosis development.


Assuntos
Dipsacaceae , Micorrizas , Ecossistema , Variação Genética , Pradaria , Humanos , Micorrizas/genética
7.
Nature ; 597(7878): 683-687, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588667

RESUMO

Plant traits determine how individual plants cope with heterogeneous environments. Despite large variability in individual traits, trait coordination and trade-offs1,2 result in some trait combinations being much more widespread than others, as revealed in the global spectrum of plant form and function (GSPFF3) and the root economics space (RES4) for aboveground and fine-root traits, respectively. Here we combine the traits that define both functional spaces. Our analysis confirms the major trends of the GSPFF and shows that the RES captures additional information. The four dimensions needed to explain the non-redundant information in the dataset can be summarized in an aboveground and a fine-root plane, corresponding to the GSPFF and the RES, respectively. Both planes display high levels of species aggregation, but the differentiation among growth forms, families and biomes is lower on the fine-root plane, which does not include any size-related trait, than on the aboveground plane. As a result, many species with similar fine-root syndromes display contrasting aboveground traits. This highlights the importance of including belowground organs to the GSPFF when exploring the interplay between different natural selection pressures and whole-plant trait integration.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Plantas/classificação , Fenótipo , Desenvolvimento Vegetal , Análise de Componente Principal
9.
Ecology ; 100(2): e02575, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516275

RESUMO

Most studies consider aboveground plant species richness as a representative biodiversity measure. This approach inevitably assumes that the partitioning of total plant species richness into above- and belowground components is constant or at least consistent within and across vegetation types. However, with studies considering belowground plant richness still scarce and completely absent along vegetation gradients, this assumption lacks experimental support. Novel DNA sequencing techniques allow economical, high-throughput species identification of belowground environmental samples, enabling the measurement of the contributions of both above- and belowground plant components to total plant richness. We investigated above- and belowground plant species richness in four vegetation types (birch forest, heath, low alpine tundra, high alpine tundra) at the scale of herbaceous plant neighborhoods (dm) using 454 sequencing of the chloroplast trnL (UAA) intron to determine the plant species richness of environmental root samples and combined it with aboveground data from vegetation surveys to obtain total plant species richness. We correlated the measured plant species richness components with each other and with their respective plant biomass components within and across vegetation types. Total plant species richness exceeded aboveground richness twice on average and by as much as three times in low alpine tundra, indicating that a significant fraction of belowground plant richness cannot be recorded aboveground. More importantly, no consistent relationship among richness components (above- and belowground) was found within or across vegetation types, indicating that aboveground richness alone cannot predict total plant richness in contrasting vegetation types. Finally, no consistent relationship between plant richness and the corresponding biomass component was found. Our results clearly show that aboveground plant richness alone is a poor estimator of total plant species richness within and across different vegetation types. Consequently, it is crucial to account for belowground plant richness in future plant ecological studies in order to validate currently accepted plant richness patterns, as well as to measure potential changes in plant community composition in a changing environment.


Assuntos
Ecossistema , Plantas , Biodiversidade , Biomassa , Análise de Sequência de DNA
10.
Ecol Evol ; 7(24): 11021-11032, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299278

RESUMO

Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant-associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.

11.
Inhal Toxicol ; 25(7): 405-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23796017

RESUMO

The health consequences of sand particle inhalation are incompletely understood. This project evaluated the respiratory toxicity of sand particles collected at military bases near Fort Irwin USA, in Iraq (Camp Victory, Taji and Talil), and Khost Afghanistan. Our primary focus was on assessing the role of soluble metals in the respiratory toxicity of the sand particles using in vitro and in vivo methods. Replicating rat type II alveolar cell cultures (RLE-6TN) were exposed to sand extracts or vehicle control in serum-free media for ≤24 h. Cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and assessment of lactate dehydrogenase leakage. The relative in vitro cytotoxicity of the sand extracts was Taji ≈ Talil > Afghanistan > Camp Victory ≈ Fort Irwin. We also assessed extracts of Camp Victory, Afghanistan, and Taji sand for acute and delayed pulmonary toxicity in rats following intratracheal administration. Assessments included biochemical analysis of bronchoalveolar lavage fluid (BALF) and lung histopathology. The in vitro cytotoxicity assay results were partially predictive of in vivo responses. The more cytotoxic Taji sand extract induced an acute irritant response in rats following intratracheal administration. Rats given the less cytotoxic Camp Victory sand extract had minimal biochemical or cytological BALF changes whereas rats given either the Afghanistan or Taji sand extracts demonstrated BALF changes that were suggestive of mild lung inflammation. Unexpectedly, we observed similar lung pathology in all extract-exposed rats. The results of our study can be used to prioritize future particle inhalation studies or guide epidemiological study design.


Assuntos
Poeira , Pulmão/efeitos dos fármacos , Dióxido de Silício/toxicidade , Administração por Inalação , Afeganistão , Animais , Arsênio/análise , Arsênio/toxicidade , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Poeira/análise , Endotoxinas/análise , Endotoxinas/toxicidade , Geografia , Iraque , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metais/análise , Metais/toxicidade , Ratos , Dióxido de Silício/análise , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA