Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Genet ; 69: 104938, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580081

RESUMO

Hajdu-Cheney syndrome (HCS) is an extremely rare autosomal dominant skeletal disorder. The prevalence rate of less than 1 case per 1,000,000 newborns and only 50 cases were reported in the medical literature. HCS is characterized by progressive bone resorption in the distal phalanges (acro-osteolysis), progressive osteoporosis, distinct craniofacial changes, dental anomalies, and occasional association with renal abnormalities. HCS is caused by pathogenic variants in the NOTCH2 gene, 34th exon. We report first familial case of HCS caused by likely pathogenic variant of NOTCH2 gene c.6449delC, p.(Pro2150LeufsTer5).

3.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Mol Genet Genomic Med ; 9(10): e1774, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347384

RESUMO

BACKGROUND: Fibrodysplasia Ossificans Progressiva (FOP) is a rare autosomal dominant disease characterized by congenital malformation of the great toes and progressive heterotopic ossification of soft tissues leading to cumulative disability. The genetic cause of FOP are mutations in the ACVR1 gene that encodes a type I receptor of Bone Morphogenetic Proteins. The most recurrent mutation in FOP patients is R206H affecting the Glycine-Serine rich domain and causing the hyper-activation of the receptor and the responsivity to the non-canonical ligand, Activin A. In the present study, we described a 3-years old child with early and highly suggestive clinical features of FOP who was found negative for the recurrent p.R206H substitution. METHODS: Molecular screening of the whole ACVR1 coding sequence and functional characterization in transfection-based assays. RESULTS AND CONCLUSIONS: We identified a novel, de novo variant in the fifth ACVR1 coding exon (NM_001111067.4:c.772A>T; NP_001104537.1:p.(R258W)). This substitution, never reported in association with FOP, affects a conserved arginine residue in the kinase domain of the protein. In silico analysis predicted the pathogenicity of this substitution, demonstrated by in vitro assays showing that the p.R258W ACVR1 mutated receptor acquires the ability to transduce the aberrant Activin A-mediated signaling, as observed for the gene variants associated with FOP.


Assuntos
Receptores de Ativinas Tipo I/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Miosite Ossificante/diagnóstico , Miosite Ossificante/genética , Alelos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Pré-Escolar , Genótipo , Humanos , Masculino , Radiografia
5.
J Hum Genet ; 66(10): 995-1008, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33875766

RESUMO

Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Ciliopatias/genética , Predisposição Genética para Doença , Isoformas de Proteínas/genética , Adulto , Idoso , Doenças do Desenvolvimento Ósseo/epidemiologia , Doenças do Desenvolvimento Ósseo/patologia , Ciliopatias/epidemiologia , Ciliopatias/patologia , Dineínas do Citoplasma/genética , Proteínas do Citoesqueleto/genética , Feminino , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sequenciamento Completo do Genoma
6.
Medicina (Kaunas) ; 56(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113773

RESUMO

Galactosemia is a rare autosomal recessive genetic disorder that causes impaired metabolism of the carbohydrate galactose. This leads to severe liver and kidney insufficiency, central nervous system damage and long-term complications in newborns. We present two clinical cases of classical galactosemia diagnosed at the Lithuanian University of Health Sciences (LUHS) Kaunas Clinics hospital and we compare these cases in terms of clinical symptoms and genetic variation in the GALT gene. The main clinical symptoms were jaundice and hepatomegaly, significant weight loss, and lethargy. The clinical presentation of the disease in Patient 1 was more severe than that in Patient 2 due to liver failure and E. coli-induced sepsis. A novel, likely pathogenic GALT variant NM_000155.4:c.305T>C (p.Leu102Pro) was identified and we believe it could be responsible for a more severe course of the disease, although further study is needed to confirm this. It is very important to suspect and diagnose galactosemia as early in its course as possible, and introduce lactose-free formula into the patient's diet. Wide-scale newborn screening and genetic testing are particularly crucial for the early detection of the disease.


Assuntos
Galactosemias , UTP-Hexose-1-Fosfato Uridililtransferase , Escherichia coli , Galactose , Galactosemias/diagnóstico , Galactosemias/genética , Humanos , Recém-Nascido , Lituânia , Mutação , UTP-Hexose-1-Fosfato Uridililtransferase/genética
7.
Orphanet J Rare Dis ; 15(1): 103, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334637

RESUMO

BACKGROUND: The European Reference Networks, ERNs, are virtual networks for healthcare providers across Europe to collaborate and share expertise on complex or rare diseases and conditions. As part of the ERNs, the Clinical Patient Management System, CPMS, a secure digital platform, was developed to allow and facilitate web-based, clinical consultations between submitting clinicians and relevant international experts. The European Reference Network on Intellectual Disability, TeleHealth and Congenital Anomalies, ERN ITHACA, was formed to harness the clinical and diagnostic expertise in the sector of rare, multiple anomaly and/or intellectual disability syndromes, chromosome disorders and undiagnosed syndromic disorders. We present the first year results of CPMS use by ERN ITHACA as an example of a telemedicine strategy for the diagnosis and management of patients with rare developmental disorders. RESULTS: ERN ITHACA ranked third in telemedicine activity amongst 24 European networks after 12 months of using the CPMS. Information about 28 very rare cases from 13 different centres across 7 countries was shared on the platform, with diagnostic or other management queries. Early interaction with patient support groups identified data protection as of primary importance in adopting digital platforms for patient diagnosis and care. The first launch of the CPMS was built to accommodate the needs of all ERNs. The ERN ITHACA telemedicine process highlighted a need to customise the CPMS with network-specific requirements. The results of this effort should enhance the CPMS utility for telemedicine services and ERN-specific care outcomes. CONCLUSIONS: We present the results of a long and fruitful process of interaction between the ERN ITHACA network lead team and EU officials, software developers and members of 38 EU clinical genetics centres to organise and coordinate direct e-healthcare through a secure, digital platform. The variability of the queries in just the first 28 cases submitted to the ERN ITHACA CPMS is a fair representation of the complexity and rarity of the patients referred, but also proof of the sophisticated and variable service that could be provided through a structured telemedicine approach for patients and families with rare developmental disorders. Web-based approaches are likely to result in increased accessibility to clinical genomic services.


Assuntos
Doenças Raras , Telemedicina , Criança , Atenção à Saúde , Deficiências do Desenvolvimento , Europa (Continente) , Humanos , Doenças Raras/diagnóstico , Doenças Raras/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA