Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0248784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33822805

RESUMO

We introduce a new experimental approach to measuring the effects of health insurance policy alternatives on behavior and health outcomes over the life course. In a virtual environment with multi-period lives, subjects earn virtual income and allocate spending, to maximize utility, which is converted into cash payment. We compare behavior across age, income and insurance plans-one priced according to an individual's expected cost and the other uniformly priced through employer-implemented cost sharing. We find that 1) subjects in the employer-implemented plan purchased insurance at higher rates; 2) the employer-based plan reduced differences due to income and age; 3) subjects in the actuarial plan engaged in more health-promoting behaviors, but still below optimal levels, and did save at the level required, so did realize the full benefits of the plan. Subjects had more difficulty optimizing choices in the Actuarial treatment, because it required more long term planning and evaluating benefits that compounded over time. Contrary, to model predictions, the actuarial priced insurance plan did not increase utility relative to the employer-based plan.


Assuntos
Seguro Saúde/economia , Seguro Saúde/estatística & dados numéricos , Seguro Saúde/tendências , Custo Compartilhado de Seguro/métodos , Custo Compartilhado de Seguro/tendências , Planos de Assistência de Saúde para Empregados/economia , Planos de Assistência de Saúde para Empregados/tendências , Política de Saúde/economia , Política de Saúde/tendências , Humanos , Modelos Estatísticos , Estados Unidos
2.
PLoS One ; 16(1): e0246055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507967

RESUMO

PURPOSE: To adapt and validate a previously developed decision tree for youth to identify bedrest for use in preschool children. METHODS: Parents of healthy preschool (3-6-year-old) children (n = 610; 294 males) were asked to help them to wear an accelerometer for 7 to 10 days and 24 hours/day on their waist. Children with ≥3 nights of valid recordings were randomly allocated to the development (n = 200) and validation (n = 200) groups. Wear periods from accelerometer recordings were identified minute-by-minute as bedrest or wake using visual identification by two independent raters. To automate visual identification, chosen decision tree (DT) parameters (block length, threshold, bedrest-start trigger, and bedrest-end trigger) were optimized in the development group using a Nelder-Mead simplex optimization method, which maximized the accuracy of DT-identified bedrest in 1-min epochs against synchronized visually identified bedrest (n = 4,730,734). DT's performance with optimized parameters was compared with the visual identification, commonly used Sadeh's sleep detection algorithm, DT for youth (10-18-years-old), and parental survey of sleep duration in the validation group. RESULTS: On average, children wore an accelerometer for 8.3 days and 20.8 hours/day. Comparing the DT-identified bedrest with visual identification in the validation group yielded sensitivity = 0.941, specificity = 0.974, and accuracy = 0.956. The optimal block length was 36 min, the threshold 230 counts/min, the bedrest-start trigger 305 counts/min, and the bedrest-end trigger 1,129 counts/min. In the validation group, DT identified bedrest with greater accuracy than Sadeh's algorithm (0.956 and 0.902) and DT for youth (0.956 and 0.861) (both P<0.001). Both DT (564±77 min/day) and Sadeh's algorithm (604±80 min/day) identified significantly less bedrest/sleep than parental survey (650±81 min/day) (both P<0.001). CONCLUSIONS: The DT-based algorithm initially developed for youth was adapted for preschool children to identify time spent in bedrest with high accuracy. The DT is available as a package for the R open-source software environment ("PhysActBedRest").


Assuntos
Atividade Motora/fisiologia , Sono/fisiologia , Acelerometria , Criança , Pré-Escolar , Feminino , Humanos , Masculino
3.
PLoS One ; 13(3): e0194461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29570740

RESUMO

OBJECTIVES: To adapt and refine a previously-developed youth-specific algorithm to identify bedrest for use in adults. The algorithm is based on using an automated decision tree (DT) analysis of accelerometry data. DESIGN: Healthy adults (n = 141, 85 females, 19-69 years-old) wore accelerometers on the waist, with a subset also wearing accelerometers on the dominant wrist (n = 45). Participants spent ≈24-h in a whole-room indirect calorimeter equipped with a force-platform floor to detect movement. METHODS: Minute-by-minute data from recordings of waist-worn or wrist-worn accelerometers were used to identify bedrest and wake periods. Participants were randomly allocated to development (n = 69 and 23) and validation (n = 72 and 22) groups for waist-worn and wrist-worn accelerometers, respectively. The optimized DT algorithm parameters were block length, threshold, bedrest-start trigger, and bedrest-end trigger. Differences between DT classification and synchronized objective classification by the room calorimeter to bedrest or wake were assessed for sensitivity, specificity, and accuracy using a Receiver Operating Characteristic (ROC) procedure applied to 1-min epochs (n = 92,543 waist; n = 30,653 wrist). RESULTS: The optimal algorithm parameter values for block length were 60 and 45 min, thresholds 12.5 and 400 counts/min, bedrest-start trigger 120 and 400 counts/min, and bedrest-end trigger 1,200 and 1,500 counts/min, for the waist and wrist-worn accelerometers, respectively. Bedrest was identified correctly in the validation group with sensitivities of 0.819 and 0.912, specificities of 0.966 and 0.923, and accuracies of 0.755 and 0.859 by the waist and wrist-worn accelerometer, respectively. The DT algorithm identified bedrest/sleep with greater accuracy than a commonly used automated algorithm (Cole-Kripke) for wrist-worn accelerometers (p<0.001). CONCLUSIONS: The adapted DT accurately identifies bedrest in data from accelerometers worn by adults on either the wrist or waist. The automated bedrest/sleep detection DT algorithm for both youth and adults is openly accessible as a package "PhysActBedRest" for the R-computer language.


Assuntos
Acelerometria , Repouso em Cama , Dispositivos Eletrônicos Vestíveis , Punho , Acelerometria/instrumentação , Acelerometria/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA