Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1293307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726298

RESUMO

Sweet corn breeding programs, like field corn, focus on the development of elite inbred lines to produce commercial hybrids. For this reason, genomic selection models can help the in silico prediction of hybrid crosses from the elite lines, which is hypothesized to improve the test cross scheme, leading to higher genetic gain in a breeding program. This study aimed to explore the potential of implementing genomic selection in a sweet corn breeding program through hybrid prediction in a within-site across-year and across-site framework. A total of 506 hybrids were evaluated in six environments (California, Florida, and Wisconsin, in the years 2020 and 2021). A total of 20 traits from three different groups were measured (plant-, ear-, and flavor-related traits) across the six environments. Eight statistical models were considered for prediction, as the combination of two genomic prediction models (GBLUP and RKHS) with two different kernels (additive and additive + dominance), and in a single- and multi-trait framework. Also, three different cross-validation schemes were tested (CV1, CV0, and CV00). The different models were then compared based on the correlation between the estimated breeding values/total genetic values and phenotypic measurements. Overall, heritabilities and correlations varied among the traits. The models implemented showed good accuracies for trait prediction. The GBLUP implementation outperformed RKHS in all cross-validation schemes and models. Models with additive plus dominance kernels presented a slight improvement over the models with only additive kernels for some of the models examined. In addition, models for within-site across-year and across-site performed better in the CV0 than the CV00 scheme, on average. Hence, GBLUP should be considered as a standard model for sweet corn hybrid prediction. In addition, we found that the implementation of genomic prediction in a sweet corn breeding program presented reliable results, which can improve the testcross stage by identifying the top candidates that will reach advanced field-testing stages.

2.
J Org Chem ; 89(7): 4595-4606, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452367

RESUMO

Immunomodulatory imide drugs form the core of many pharmaceutically relevant structures, but Csp2-Csp2 bond formation via metal-catalyzed cross coupling is difficult due to the sensitivity of the glutarimide ring ubiquitous in these structures. We report that replacement of the traditional alkali base with a fluoride source enhances a previously challenging Suzuki-Miyaura coupling on glutarimide-containing compounds with trifluoroborates. These enabling conditions are reactive enough to generate these derivatives in high yields but mild enough to preserve both the glutarimide and its sensitive stereocenter. Experimental and computational data suggest a mechanistically distinct process of π-coordination of the trifluoroborate enabled by these conditions.


Assuntos
Fluoretos , Paládio , Estrutura Molecular , Catálise , Paládio/química
3.
Pest Manag Sci ; 80(3): 1645-1653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37986260

RESUMO

BACKGROUND: Tolpyralate, a relatively new inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPPD), is registered for postemergence use in all types of corn (Zea mays L.) and has a record of excellent crop tolerance. A report of severe crop injury to sweet corn inbred (XSEN187) led to the following objectives: (i) determine whether sensitivity to tolpyralate in XSEN187 exists, and if confirmed, (ii) determine the genetic basis of tolpyralate sensitivity, and (iii) screen other corn germplasm for sensitivity to tolpyralate. RESULTS: Inbred XSEN187 was confirmed sensitive to tolpyralate. Inclusion of methylated seed oil or nonionic surfactant in the spray volume was necessary for severe crop injury. Tolpyralate sensitivity in XSEN187 is not conferred by alleles at Nsf1, a cytochrome P450-encoding gene (CYP81A9) conferring tolerance to many corn herbicides. Evidence suggests that tolpyralate sensitivity in XSEN187 is conferred by a single gene mapped to the Chr05: 283 240-1 222 909 bp interval. Moreover, tolpyralate sensitivity was observed in 48 other sweet corn and field corn inbreds. CONCLUSIONS: Severe sensitivity to tolpyralate exists in sweet corn and field corn germplasm when the herbicide is applied according to label directions. Whereas the corn response to several other herbicides, including HPPD-inhibitors, is conferred by the Nsf1 locus, corn sensitivity to tolpyralate is the result of a different locus. The use of tolpyralate should consider herbicide tolerance in inbred lines from which corn hybrids were derived, whereas alleles that render corn germplasm sensitive to tolpyralate should be eliminated from breeding populations, inbreds, and commercial cultivars. © 2023 Illinois Foundation Seeds, Inc and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Humanos , Zea mays/genética , Herbicidas/farmacologia , Melhoramento Vegetal , Illinois
4.
ACS Med Chem Lett ; 14(10): 1338-1343, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849531

RESUMO

Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770). A subsequent SAR campaign led us to a class of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines that in combination with VX-770 rescued function of G551D mutant CFTR channels to approximately 400% above the activity of VX-770 alone and to nearly wild-type CFTR levels in the same Fischer rat thyroid model system.

5.
Org Lett ; 24(50): 9290-9295, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36512372

RESUMO

The rhodium(II)-catalyzed reaction of a model alkenyl donor/acceptor N-sulfonyltriazole with a wide selection of furans is reported. This investigation unearthed a range of structurally diverse carbocyclic and ring-opened products, in good to excellent yields. The products obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on both the structural and electronic features of the furan substrate.


Assuntos
Ródio , Ródio/química , Triazóis , Reação de Cicloadição , Catálise , Furanos/química
6.
J Org Chem ; 87(21): 13517-13528, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36264239

RESUMO

Rhodium-catalyzed enantioselective synthesis of 1-phenoxycyclopropane-1-carbaldehydes by intermolecular cyclopropanation of terminal alkenes followed by imine hydrolysis is described. This methodology utilizes 4-aryloxy-1-sulfonyl-1,2,3-triazoles as the carbene precursors and the chiral dirhodium(II) tetracarboxylates Rh2(S-NTTL)4 or Rh2(S-DPCP)4 as the catalysts. These reactions are considered to proceed via rhodium-stabilized donor/acceptor carbene intermediates, and these studies demonstrate that a heteroatom donor group is compatible with an enantioselective transformation.


Assuntos
Ródio , Oxigênio , Estereoisomerismo , Estrutura Molecular , Triazóis , Catálise
7.
J Med Chem ; 65(3): 1996-2022, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35044775

RESUMO

A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).


Assuntos
Proteínas de Bactérias/metabolismo , Guanidina/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Ureia/análogos & derivados , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Guanidina/química , Guanidina/metabolismo , Guanidina/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Ureia/química , Ureia/metabolismo , Ureia/farmacologia
8.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849806

RESUMO

Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentrations of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme involved in synthesis of the metal chelator nicotianamine. In addition, a pervasive association signal was identified for cadmium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the elemental profile of fresh sweet corn kernels.


Assuntos
Cádmio , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Verduras , Zea mays/genética , Zinco
9.
Nat Commun ; 12(1): 1227, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623026

RESUMO

Sweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets. The ten pseudochromosomes cover 92% of the total assembly and 99% of the estimated genome size, with a scaffold N50 of 222.2 Mb. This reference genome completely assembles the large structural variation that created the mutant sh2-R allele. Furthermore, comparative genomics analysis with six field corn genomes highlights differences in single-nucleotide polymorphisms, structural variations, and transposon composition. Phylogenetic analysis of 5,381 diverse maize and teosinte accessions reveals genetic relationships between sweet corn and other types of maize. Our results show evidence for a common origin in northern Mexico for modern sweet corn in the U.S. Finally, population genomic analysis identifies regions of the genome under selection and candidate genes associated with sweet corn traits, such as early flowering, endosperm composition, plant and tassel architecture, and kernel row number. Our study provides a high-quality reference-genome sequence to facilitate comparative genomics, functional studies, and genomic-assisted breeding for sweet corn.


Assuntos
Evolução Molecular , Genética Populacional , Genoma de Planta , Zea mays/genética , Alelos , Elementos de DNA Transponíveis/genética , Loci Gênicos , Haplótipos/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Zea mays/anatomia & histologia
10.
Surgery ; 169(3): 603-609, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077198

RESUMO

BACKGROUND: Ventral hernia repair is a common procedure with reported 15% to 37% morbidity and 0.3% to 1.4% mortality rates. This study examines the 30-day morbidity and mortality of open and laparoscopic ventral hernia repair in veterans, along with the impact of body mass index on these outcomes. METHODS: The Veterans Affairs Surgical Quality Improvement Program was queried for all ventral hernia repairs during the period 2008 to 2015. In this retrospective analysis, we compared outcomes of open ventral hernia repair versus laparoscopic ventral hernia repair and among different body mass index classes. RESULTS: A total of 19,883 patients were identified (92.6% male, mean age 59.7, 53.1% obese, and 71.6% with American Society of Anesthesiologists class ≥III). There were 95 (0.5%) mortalities, and complications occurred in 1,289 (6.5%) patients. Open ventral hernia repair was performed in 60.2%; 14.5% were recurrent, and 3.3% were performed as an emergency operation. When compared with open ventral hernia repair, the laparoscopic ventral hernia repair group had higher mean body mass index, less patients with American Society of Anesthesiologists class ≥III, fewer emergency operations, longer operative time, less complications, decreased mortality, and shorter duration of stay. Body mass index 35.00 to 49.99 was predictive of overall complications in the open ventral hernia repair group. CONCLUSION: Ventral hernia repair can be performed in the veteran population with outcomes comparable to those in the private sector. Morbid obesity has a negative impact on ventral hernia repair outcomes that is most prominent following open surgery. Laparoscopic ventral hernia repair may offer superior outcomes when compared to open ventral hernia repair and may be considered.


Assuntos
Hérnia Ventral/epidemiologia , Hérnia Ventral/cirurgia , Herniorrafia , Serviços de Saúde para Veteranos Militares , Veteranos , Adulto , Idoso , Índice de Massa Corporal , Comorbidade , Feminino , Hérnia Ventral/etiologia , Herniorrafia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade , Duração da Cirurgia , Cuidados Pré-Operatórios , Fatores de Risco , Resultado do Tratamento
11.
Front Plant Sci ; 12: 800326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211133

RESUMO

In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 (Sh2) and isoamylase type DBE Sugary1 (Su1). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1, to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2, and su1) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3' RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transporters and of genes for ABA signaling. Key regulators of starch biosynthesis and grain filling were identified. Notably, this includes Class II trehalose 6-phosphate synthases, Hexokinase1, and Apetala2 transcription factor-like (AP2/ERF) transcription factors. Additionally, our results provide insight into the mechanism of Sugary enhancer1, suggesting a potential role in regulating GA signaling via GRAS transcription factor Scarecrow-like1.

12.
Plant Genome ; 13(1): e20008, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016632

RESUMO

Sweet corn (Zea mays L.) is highly consumed in the United States, but does not make major contributions to the daily intake of carotenoids (provitamin A carotenoids, lutein and zeaxanthin) that would help in the prevention of health complications. A genome-wide association study of seven kernel carotenoids and twelve derivative traits was conducted in a sweet corn inbred line association panel ranging from light to dark yellow in endosperm color to elucidate the genetic basis of carotenoid levels in fresh kernels. In agreement with earlier studies of maize kernels at maturity, we detected an association of ß-carotene hydroxylase (crtRB1) with ß-carotene concentration and lycopene epsilon cyclase (lcyE) with the ratio of flux between the α- and ß-carotene branches in the carotenoid biosynthetic pathway. Additionally, we found that 5% or less of the evaluated inbred lines possessing the shrunken2 (sh2) endosperm mutation had the most favorable lycE allele or crtRB1 haplotype for elevating ß-branch carotenoids (ß-carotene and zeaxanthin) or ß-carotene, respectively. Genomic prediction models with genome-wide markers obtained moderately high predictive abilities for the carotenoid traits, especially lutein, and outperformed models with less markers that targeted candidate genes implicated in the synthesis, retention, and/or genetic control of kernel carotenoids. Taken together, our results constitute an important step toward increasing carotenoids in fresh sweet corn kernels.


Assuntos
Carotenoides , Zea mays , Estudo de Associação Genômica Ampla , Fenótipo , Zea mays/genética , beta Caroteno
13.
Molecules ; 25(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024194

RESUMO

Owing to its unique structure and properties, the glucose dendrimer phytoglycogen is gaining interest for medical and biotechnology applications. Although many maize variants are available from commercial and academic breeding programs, most applications rely on phytoglycogen extracted from the common maize variant, sugary1. Here we characterized the solubility, hydrodynamic diameter, water-binding properties, protein contaminant concentration, and cytotoxicity of phytoglycogens from different maize sources, A632su1, A619su1, Wesu7, and Ia453su1, harboring various sugary1 mutants. A619su1-SW phytoglycogen was cytotoxic while A632su1-SW phytoglycogen was not. A632su1-Pu phytoglycogen promoted cell growth, whereas extracts from A632su1-NE, A632su1-NC, and A632su1-CM were cytotoxic. Phytoglycogen extracted from Wesu7su1-NE using ethanol precipitation was cytotoxic. Acid-treatment improved Wesu7 phytoglycogen cytocompatibility. Protease-treated Wesu7 extracts promoted cell growth. Phytoglycogen extracted from Ia453su1 21 days after pollination ("Ia435su1 21DAP") was cytotoxic, whereas phytoglycogen extracted at 40 days ("Ia435su1 40DAP") was not. In general, size and solubility had no correlation with cytocompatibility, whereas protein contaminant concentration and water-binding properties did. A632su1-CM had the highest protein contamination among A632 mutants, consistent with its higher cytotoxicity. Likewise, Ia435su1 21DAP phytoglycogen had higher protein contamination than Ia435su1 40DAP. Conversely, protease-treated Wesu7 extracts had lower protein contamination than the other Wesu7 extracts. A632su1-NE, A632su1-NC, and A632su1-CM had similar water-binding properties which differed from those of A632su1-Pu and A632su1-SW. Likewise, water binding differed between Ia435su1 21DAP and Ia435su1 40DAP. Collectively, these data demonstrate that maize phytoglycogen extracts are not uniformly cytocompatible. Rather, maize variant, plant genotype, protein contaminants, and water-binding properties are determinants of phytoglycogen cytotoxicity.


Assuntos
Fenômenos Químicos , Glicogênio/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Zea mays/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Glicogênio/farmacologia , Hidrodinâmica , Camundongos , Estrutura Molecular , Células NIH 3T3 , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Solubilidade , Análise Espectral
14.
Proc Natl Acad Sci U S A ; 116(41): 20776-20785, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548423

RESUMO

sugary enhancer1 (se1) is a naturally occurring mutant allele involved in starch metabolism in maize endosperm. It is a recessive modifier of sugary1 (su1) and commercially important in modern sweet corn breeding, but its molecular identity and mode of action remain unknown. Here, we developed a pair of near-isogenic lines, W822Gse (su1-ref/su1-ref se1/se1) and W822GSe (su1-ref/su1-ref Se1/Se1), that Mendelize the se1 phenotype in an su1-ref background. W822Gse kernels have lower starch and higher water soluble polysaccharide and sugars than W822GSe kernels. Using high-resolution genetic mapping, we found that wild-type Se1 is a gene Zm00001d007657 on chromosome 2 and a deletion of this gene causes the se1 phenotype. Comparative metabolic profiling of seed tissue between these 2 isolines revealed the remarkable difference in carbohydrate metabolism, with sucrose and maltose highly accumulated in the mutant. Se1 is predominantly expressed in the endosperm, with low expression in leaf and root tissues. Differential expression analysis identified genes enriched in both starch biosynthesis and degradation processes, indicating a pleiotropic regulatory effect of se1 Repressed expression of Se1 and Su1 in RNA interference-mediated transgenic maize validates that deletion of the gene identified as Se1 is a true causal gene responsible for the se1 phenotype. The findings contribute to our understanding of starch metabolism in cereal crops.


Assuntos
Metabolismo dos Carboidratos , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Amido/metabolismo , Zea mays/metabolismo , Metaboloma , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transcriptoma , Zea mays/genética , Zea mays/crescimento & desenvolvimento
15.
Plant Genome ; 12(2)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31290926

RESUMO

Use of a single reference genome for genome-wide association studies (GWAS) limits the gene space represented to that of a single accession. This limitation can complicate identification and characterization of genes located within presence-absence variations (PAVs). In this study, we present the draft de novo genome assembly of 'PHJ89', an 'Oh43'-type inbred line of maize ( L.). From three separate reference genome assemblies ('B73', 'PH207', and PHJ89) that represent the predominant germplasm groups of maize, we generated three separate whole-seedling gene expression profiles and single nucleotide polymorphism (SNP) matrices from a panel of 942 diverse inbred lines. We identified 34,447 (B73), 39,672 (PH207), and 37,436 (PHJ89) transcripts that are not present in the respective reference genome assemblies. Genome-wide association studies were conducted in the 942 inbred panel with both the SNP and expression data values to map (SCMV) resistance. Highlighting the impact of alternative reference genomes in gene discovery, the GWAS results for SCMV resistance with expression values as a surrogate measure of PAV resulted in robust detection of the physical location of a known resistance gene when the B73 reference that contains the gene was used, but not the PH207 reference. This study provides the valuable resource of the Oh43-type PHJ89 genome assembly as well as SNP and expression data for 942 individuals generated from three different reference genomes.


Assuntos
Variação Genética , Genoma de Planta , Zea mays/genética , Estudo de Associação Genômica Ampla , Endogamia , Anotação de Sequência Molecular , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , RNA de Plantas , Valores de Referência , Análise de Sequência de RNA , Transcriptoma
16.
Plant Genome ; 12(1)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30951088

RESUMO

Sweet corn ( L.), a highly consumed fresh vegetable in the United States, varies for tocochromanol (tocopherol and tocotrienol) levels but makes only a limited contribution to daily intake of vitamin E and antioxidants. We performed a genome-wide association study of six tocochromanol compounds and 14 derivative traits across a sweet corn inbred line association panel to identify genes associated with natural variation for tocochromanols and vitamin E in fresh kernels. Concordant with prior studies in mature maize kernels, an association was detected between γ-tocopherol methyltransferase (vte4) and α-tocopherol content, along with () and () for tocotrienol variation. Additionally, two kernel starch synthesis genes, () and (), were associated with tocotrienols, with the strongest evidence for in combination with fixed, strong and alleles, accounting for the greater amount of tocotrienols in and lines. In prediction models with genome-wide markers, predictive abilities were higher for tocotrienols than tocopherols, and these models were superior to those that used marker sets targeting a priori genes involved in the biosynthesis and/or genetic control of tocochromanols. Through this quantitative genetic analysis, we have established a key step for increasing tocochromanols in fresh kernels of sweet corn for human health and nutrition.


Assuntos
Tocoferóis/metabolismo , Tocotrienóis/metabolismo , Zea mays/genética , Genes de Plantas , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Melhoramento Vegetal , Zea mays/metabolismo
17.
Plant J ; 99(1): 23-40, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30746832

RESUMO

Cereal yields decrease when grain fill proceeds under conditions of prolonged, moderately elevated temperatures. Endosperm-endogenous processes alter both rate and duration of dry weight gain, but underlying mechanisms remain unclear. Heat effects could be mediated by either abnormal, premature cessation of storage compound deposition or accelerated implementation of normal development. This study used controlled environments to isolate temperature as the sole environmental variable during Zea mays kernel-fill, from 12 days after pollination to maturity. Plants subjected to elevated day, elevated night temperatures (38°C day, 28°C night (38/28°C])) or elevated day, normal night (38/17°C), were compared with those from controls grown under normal day and night conditions (28/17°C). Progression of change over time in endosperm tissue was followed to dissect contributions at multiple levels, including transcriptome, metabolome, enzyme activities, product accumulation, and tissue ultrastructure. Integrated analyses indicated that the normal developmental program of endosperm is fully executed under prolonged high-temperature conditions, but at a faster rate. Accelerated development was observed when both day and night temperatures were elevated, but not when daytime temperature alone was increased. Although transcripts for most components of glycolysis and respiration were either upregulated or minimally affected, elevated temperatures decreased abundance of mRNAs related to biosynthesis of starch and storage proteins. Further analysis of 20 central-metabolic enzymes revealed six activities that were reduced under high-temperature conditions, indicating candidate roles in the observed reduction of grain dry weight. Nonetheless, a striking overall resilience of grain filling in the face of elevated temperatures can be attributed to acceleration of normal endosperm development.


Assuntos
Endosperma/metabolismo , Zea mays/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Endosperma/genética , Endosperma/fisiologia , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Temperatura , Zea mays/genética , Zea mays/fisiologia
18.
Sci Rep ; 8(1): 13032, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158664

RESUMO

Crop improvement programs focus on characteristics that are important for plant productivity. Typically genes underlying these traits are identified and stacked to create improved cultivars. Hence, identification of valuable traits for plant productivity is critical for plant improvement. Here we describe an important characteristic for maize productivity. Despite the fact mature maize ears are typically covered with kernels, we find that only a fraction of ovaries give rise to mature kernels. Non-developed ovaries degenerate while neighboring fertilized ovaries produce kernels that fill the ear. Abortion occurs throughout the ear, not just at the tip. We show that the fraction of aborted ovaries/kernels is genetically controlled and varies widely among maize lines, and low abortion genotypes are rare. Reducing or eliminating ovary abortion could substantially increase yield, making this characteristic a new target for selection in maize improvement programs.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Zea mays/fisiologia , Endogamia , Reprodução , Zea mays/genética
19.
Plant Genome ; 9(1)2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27898757

RESUMO

Teosinte ( subsp. H. H. Iltis & Doebley) has greater genetic diversity than maize inbreds and landraces ( subsp. ). There are, however, limited genetic resources to efficiently evaluate and tap this diversity. To broaden resources for genetic diversity studies in maize, we developed and evaluated 928 near-isogenic introgression lines (NILs) from 10 teosinte accessions in the B73 background. Joint linkage analysis of the 10 introgression populations identified several large-effect quantitative trait loci (QTL) for days to anthesis (DTA), kernel row number (KRN), and 50-kernel weight (Wt50k). Our results confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects enabling future research into the genetic basis of these traits. Additionally, we used a targeted set of NILs to validate the effects of a KRN QTL located on chromosome 2. These introgression populations offer novel tools for QTL discovery and validation as well as a platform for initiating fine mapping.


Assuntos
Alelos , Zea mays/genética , Mapeamento Cromossômico , Ligação Genética , Variação Genética , Locos de Características Quantitativas
20.
Plant Physiol ; 172(3): 1787-1803, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27670817

RESUMO

Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/genética , Zea mays/genética , Alelos , Mapeamento Cromossômico , Genética Populacional , Estudo de Associação Genômica Ampla , Endogamia , Luz , Fenótipo , Folhas de Planta/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Zea mays/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA