Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; : e2400148, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374348

RESUMO

Due to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx). The CHEMSPOx is additionally functionalized with a coumarin group (CHEMSPOx-coumarin). Both polymers self-assembled in water into vesicles of ≈100 nm and are successfully loaded with a hydrophobic model drug. The loaded vesicles reveal high cellular internalization across variant cell lines within 1 h at 37 °C as well as 4 °C, albeit to a lesser extent. A kinetic study confirms the fast internalization within 5 min after the sample's addition. Therefore, different internalization pathways are involved, e.g., active uptake but also nonenergy dependent mechanisms. CHEMSPOx and CHEMSPOx-coumarin further demonstrate excellent cyto-, hemo-, and membrane compatibility, as well as a membrane-protecting effect, which underlines their good safety profile for potential biological intravenous application. Overall, CHEMSPOx, as a lipopolyoxazoline, holds great potential for versatile biological applications such as fast and direct intracellular delivery or cellular lysis protection.

2.
Biomacromolecules ; 25(8): 4749-4761, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-38963401

RESUMO

Gene therapy is pivotal in nanomedicine, offering a versatile approach to disease treatment. This study aims to achieve an optimal balance between biocompatibility and efficacy, which is a common challenge in the field. A copolymer library is synthesized, incorporating niacin-derived monomers 2-acrylamidoethyl nicotinate (AAEN) or 2-(acryloyloxy)ethyl nicotinate (AEN) with N,N-(dimethylamino)ethyl acrylamide (DMAEAm) or hydrolysis-labile N,N-(dimethylamino)ethyl acrylate (DMAEA). Evaluation of the polymers' cytotoxicity profiles reveals that an increase in AAEN or DMAEA molar ratios correlates with improved biocompatibility. Remarkably, an increase in AAEN in both DMAEA and DMAEAm copolymers demonstrated enhanced transfection efficiencies of plasmid DNA in HEK293T cells. Additionally, the top-performing polymers demonstrate promising gene expression in challenging-to-transfect cells (THP-1 and Jurkat cells) and show no significant effect on modulating immune response induction in ex vivo treated murine monocytes. Overall, the best performing candidates exhibit an optimal balance between biocompatibility and efficacy, showcasing potential advancements in gene therapy.


Assuntos
Niacina , Polímeros , Humanos , Células HEK293 , Niacina/química , Niacina/farmacologia , Animais , Camundongos , Polímeros/química , Polímeros/farmacologia , Técnicas de Transferência de Genes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Jurkat , Terapia Genética/métodos , Transfecção/métodos , Plasmídeos/genética , Células THP-1 , DNA/química
3.
ACS Macro Lett ; 13(8): 1000-1007, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39052525

RESUMO

Histidine and arginine are two amino acids that exhibit beneficial properties for gene delivery. In particular, the imidazole group of histidine facilitates endosomal release, while the guanidinium group of arginine promotes cellular entry. Consequently, a dual-charged copolymer library based on these amino acids was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The content of the N-acryloyl-l-histidine (His) monomer was systematically increased, while maintaining consistent levels of methyl N-acryloyl-l-argininate hydrochloride (ArgOMe) or N-(4-guanidinobutyl)acrylamide hydrochloride (GBAm). The resulting polymers formed stable, nanosized polyplexes when complexed with nucleic acids. Remarkably, candidates with increased His content exhibited reduced cytotoxicity profiles and enhanced transfection efficiency, particularly retaining this performance level at lower pDNA concentrations. Furthermore, endosomal release studies revealed that increased His content improved endosomal release, while ArgOMe improved cellular entry. These findings underscore the potential of customized dual-charged copolymers and the synergistic effects of His and ArgOMe/GBAm in enhancing gene delivery.


Assuntos
Técnicas de Transferência de Genes , Guanidina , Histidina , Imidazóis , Polímeros , Imidazóis/química , Humanos , Polímeros/química , Guanidina/química , Histidina/química , Arginina/química , DNA/química , DNA/metabolismo , Transfecção/métodos , Plasmídeos/genética , Endossomos/metabolismo
4.
ACS Polym Au ; 4(3): 222-234, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38882030

RESUMO

Polyanions can internalize into cells via endocytosis without any cell disruption and are therefore interesting materials for biomedical applications. In this study, amino-acid-derived polyanions with different alkyl side-chains are synthesized via postpolymerization modification of poly(pentafluorophenyl acrylate), which is synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization, to obtain polyanions with tailored hydrophobicity and alkyl branching. The success of the reaction is verified by size-exclusion chromatography, NMR spectroscopy, and infrared spectroscopy. The hydrophobicity, surface charge, and pH dependence are investigated in detail by titrations, high-performance liquid chromatography, and partition coefficient measurements. Remarkably, the determined pK a-values for all synthesized polyanions are very similar to those of poly(acrylic acid) (pK a = 4.5), despite detectable differences in hydrophobicity. Interactions between amino-acid-derived polyanions with L929 fibroblasts reveal very slow cell association as well as accumulation of polymers in the cell membrane. Notably, the more hydrophobic amino-acid-derived polyanions show higher cell association. Our results emphasize the importance of macromolecular engineering toward ideal charge and hydrophobicity for polymer association with cell membranes and internalization. This study further highlights the potential of amino-acid-derived polymers and the diversity they provide for tailoring properties toward drug delivery applications.

5.
Macromol Biosci ; 24(7): e2400002, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38484731

RESUMO

Polymeric nanoparticles (NPs) with an integrated dual delivery system enable the controlled release of bioactive molecules and drugs, providing therapeutic advantages. Key design targets include high biocompatibility, cellular uptake, and encapsulating efficiency. In this study, a polymer library derived from niacin, also known as vitamin B3 is synthesized. The library comprises poly(2-(acryloyloxy)ethyl nicotinate) (PAEN), poly(2-acrylamidoethyl nicotinate) (PAAEN), and poly(N-(2-acrylamidoethyl)nicotinamide) (PAAENA), with varying hydrophilicity in the backbone and pendant group linker. All polymers are formulated, and those with increased hydrophobicity yield NPs with homogeneous spherical distribution and diameters below 150 nm, as confirmed by scanning electron microscopy and dynamic light scattering. Encapsulation studies utilizing a model drug, neutral lipid orange (NLO), reveal the influence of polymer backbone on encapsulation efficiency. Specifically, efficiencies of 46% and 96% are observed with acrylate and acrylamide backbones, respectively. Biological investigations showed that P(AEN) and P(AAEN) NPs are non-toxic up to 300 µg mL-1, exhibit superior cellular uptake, and boost cell metabolic activity. The latter is attributed to the cellular release of niacin, a precursor to nicotinamide adenine dinucleotide (NAD), a central coenzyme in metabolism. The results underline the potential of nutrient-derived polymers as pro-nutrient and drug-delivery materials.


Assuntos
Nanopartículas , Polímeros , Nanopartículas/química , Humanos , Polímeros/química , Niacinamida/química , Niacinamida/farmacologia , Niacina/química , Interações Hidrofóbicas e Hidrofílicas , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química
6.
Macromol Rapid Commun ; 45(7): e2300649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195002

RESUMO

In the field of gene delivery, hydrophobic cationic copolymers hold great promise. They exhibit improved performance by effectively protecting genetic material from serum interactions while facilitating interactions with cellular membranes. However, managing cytotoxicity remains a significant challenge, prompting an investigation into suitable hydrophobic components. A particularly encouraging approach involves integrating nutrient components, like lipoic acid, which is known for its antioxidant properties and diverse cellular benefits such as cellular metabolism and growth. In this study, a copolymer library comprising 2-(dimethylamino)ethyl methacrylate (DMAEMA) and lipoic acid methacrylate (LAMA), combined with either n-butyl methacrylate (nBMA), ethyl methacrylate (EMA), or methyl methacrylate (MMA), is synthesized. This enables to probe the impact of lipoic acid incorporation while simultaneously exploring the influence of pendant acyclic alkyl chain length. The inclusion of lipoic acid results in a notable boost in transfection efficiency  while maintaining low cytotoxicity. Interestingly, higher levels of transfection efficiency are achieved in the presence of nBMA, EMA, or MMA. However, a positive correlation between pendant acyclic alkyl chain length and cytotoxicity is observed. Consequently, P(DMAEMA-co-LAMA-co-MMA), emerges as a promising candidate. This is attributed to the optimal combination of low cytotoxic MMA and transfection-boosting LAMA, highlighting the crucial synergy between LAMA and MMA.


Assuntos
Nylons , Ácido Tióctico , Ácido Tióctico/farmacologia , Técnicas de Transferência de Genes , Polímeros/química , Metacrilatos/química , Transfecção
7.
ACS Macro Lett ; : 158-165, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230657

RESUMO

The arrangement of charged segments in triblock copolymer micelles affects the gene delivery potential of polymeric micelles and can increase the level of gene expression when an anionic segment is incorporated in the outer shell. Triblock copolymers were synthesized by RAFT polymerzation with narrow molar mass distributions and assembled into micelles with a hydrophobic core from poly(n-butyl acrylate). The ionic shell contained either (i) an anionic segment followed by a cationic segment (HAC micelles) or (ii) a cationic block followed by an anionic block (HCA micelles). The pH-responsive anionic block contained 2-carboxyethyl acrylamide (CEAm), while the cationic block comprised 3-guanidinopropyl acrylamide (GPAm). Increasing the molar content of CEAm in HAC and HCA micelles from 6 to 13 mol % improved cytocompatibility and the endosomal escape property, while the HCA micelle with the highest mol % of anionic charges in the outer shell exhibited the highest gene expression. It became evident that improved membrane interaction of the best performing HCA micelle contributed to achieving high gene expression.

8.
Handb Exp Pharmacol ; 284: 27-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37644142

RESUMO

Considering nucleic acids as the language of life and the genome as the instruction manual of cells, their targeted modulation promises great opportunities in treating and healing diseases. In addition to viral gene transfer, the overwhelming power of non-viral mRNA-based vaccines is driving the development of novel gene transporters. Thereby, various nucleic acids such as DNA (pDNA) or RNA (mRNA, siRNA, miRNA, gRNA, or ASOs) need to be delivered, requiring a transporter due to their high molar mass and negative charge in contrast to classical agents. This chapter presents the specific biological hurdles for using nucleic acids and shows how new materials can overcome these.


Assuntos
Nanopartículas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Técnicas de Transferência de Genes , Terapia Genética , RNA Mensageiro
9.
Small ; 20(6): e2306116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794626

RESUMO

The COVID-19 mRNA vaccines represent a milestone in developing non-viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer-based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity-efficiency dilemma. Introducing anionic, hydrophilic, or "stealth" functionalities represents a promising approach to overcome this dilemma in gene delivery. Here, two sets of diblock terpolymers are created comprising hydrophobic poly(n-butyl acrylate) (PnBA), a copolymer segment made of hydrophilic 4-acryloylmorpholine (NAM), and either the cationic 3-guanidinopropyl acrylamide (GPAm) or the 2-carboxyethyl acrylamide (CEAm), which is negatively charged at neutral conditions. These oppositely charged sets of diblocks are co-assembled in different ratios to form mixed micelles. Since this experimental design enables countless mixing possibilities, a machine learning approach is applied to identify an optimal GPAm/CEAm ratio for achieving high transfection efficiency and cell viability with little resource expenses. After two runs, an optimal ratio to overcome the toxicity-efficiency dilemma is identified. The results highlight the remarkable potential of integrating machine learning into polymer chemistry to effectively tackle the enormous number of conceivable combinations for identifying novel and powerful gene transporters.


Assuntos
Micelas , Polietilenoglicóis , Polietilenoglicóis/química , Polímeros/química , Técnicas de Transferência de Genes , Acrilamidas
10.
Macromol Biosci ; 23(12): e2300135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565461

RESUMO

Branched poly(ethylene imine) (bPEI) is frequently used in RNA interference (RNAi) experiments as a cationic polymer for the delivery of small interfering RNA (siRNA) because of its ability to form stable polyplexes that facilitate siRNA uptake. However, the use of bPEI in gene delivery is limited by its cytotoxicity and a need for target specificity. In this work, bPEI is modified with d-fructose to improve biocompatibility and target breast cancer cells through the overexpressed GLUT5 transporter. Fructose-substituted bPEI (Fru-bPEI) is accessible in three steps starting from commercially available protected fructopyranosides and bPEI. Several polymers with varying molecular weights, degrees of substitution, and linker positions on d-fructose (C1 and C3) are synthesized and characterized with NMR spectroscopy, size exclusion chromatography, and elemental analysis. In vitro biological screenings show significantly reduced cytotoxicity of 10 kDa bPEI after fructose functionalization, specific uptake of siRNA polyplexes, and targeted knockdown of green fluorescent protein (GFP) in triple-negative breast cancer cells (MDA-MB-231) compared to noncancer cells (HEK293T).


Assuntos
Neoplasias da Mama , Polietilenoimina , Humanos , Feminino , RNA Interferente Pequeno/química , Polietilenoimina/química , Frutose , Neoplasias da Mama/genética , Células HEK293 , Polímeros/química
11.
Macromol Biosci ; 23(5): e2200517, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36655803

RESUMO

Cationic pH-responsive polymers promise to overcome critical challenges in cellular delivery. Ideally, the polymers become selectively charged along the endosomal pathway disturbing only the local membrane and avoiding unintended interactions or cytotoxic side effects at physiological conditions. Polypiperazines represent a novel, hydrophilic class of pH-responsive polymers whose response can be tuned within the relevant pH range (5-7.4). The authors discovered that the polypiperazines are effectively binding plasmid DNA (pDNA) and demonstrate high efficiency in transfection. By design of experiments (DoE), a wide parameter space (pDNA and polymer concentration) is screened to identify the range of effective concentrations for transfection. An isopropyl modified polypiperazine is highly efficient over a wide range of concentrations outperforming linear polyethylenimine (l-PEI, 25 kDa) in regions of low N*/P ratios. A quantitative polymerase chain reaction (qPCR) surprisingly revealed that the pDNA within the piperazine-based polyplexes can be amplified in contrast to polyplexes based on l-PEI. The pDNA must therefore be more accessible and bound differently than for other known transfection polymers. Considering the various opportunities to further optimize their structure, polypiperazines represent a promising platform for designing effective soluble polymeric vectors, which are charge-neutral at physiological conditions.


Assuntos
DNA , Polímeros , Transfecção , Plasmídeos/genética , DNA/genética , DNA/metabolismo , Polímeros/química , Concentração de Íons de Hidrogênio , Polietilenoimina/química
12.
Biomacromolecules ; 23(11): 4718-4733, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36269943

RESUMO

Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine-stat-hexyl-l-glutamine] [P(AB-l-Gln-stat-Hex-l-Gln)] was investigated for gene delivery. The influence of varying proportions of aliphatic and cationic side chains affecting the physicochemical properties of the polypeptides on transfection efficiency was investigated. A composition of 40 mol% Hex-l-Gln and 60 mol % AB-l-Gln (P3) was identified as best performer over polypeptides with higher proportions of protonatable monomers. Detailed studies of the transfection mechanism revealed the strongest interaction of P3 with cell membranes, promoting efficient endocytic cell uptake and high endosomal release. Spectrally, time-, and z-resolved fluorescence microscopy further revealed the crucial role of filopodia surfing in polyplex-cell interaction and particle internalization in lamellipodia regions, followed by rapid particle transport into cells. This study demonstrates the great potential of polypeptides for gene delivery. The amphiphilic character improves performance over cationic homopolypeptides, and the potential biodegradability is advantageous toward other synthetic polymeric delivery systems.


Assuntos
Técnicas de Transferência de Genes , Glutamina , Terapia Genética , Transfecção , Cátions , Peptídeos
13.
Macromol Biosci ; 22(10): e2200167, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933579

RESUMO

Crossing the cellular membrane and delivering active pharmaceuticals or biologicals into the cytosol of cells is an essential step in the development of nanomedicines. One of the most important intracellular processes regarding the cellular uptake of biologicals is the endolysosomal pathway. Sophisticated nanocarriers are developed to overcome a major hurdle, the endosomal entrapment, and delivering their cargo to the required site of action. In parallel, in vitro assays are established analyzing the performance of these nanocarriers. Among them, the release of the membrane-impermeable dye calcein has become a popular and straightforward method. It is accessible for most researchers worldwide, allows for rapid conclusions about the release potential, and enables the study of release mechanisms. This review is intended to provide an overview and guidance for scientists applying the calcein release assay. It comprises a survey of several applications in the study of endosomal escape, considerations of potential pitfalls, challenges, and limitations of the assay, and a brief summary of complementary methods. Based on this review, it is hoped to encourage further research groups to take advantage of the calcein release assay for their own purposes and help to create a database for more efficient cross-correlations between nanocarriers.


Assuntos
Endossomos , Citosol/metabolismo , Endossomos/metabolismo , Fluoresceínas/metabolismo , Preparações Farmacêuticas
14.
J Nanobiotechnology ; 20(1): 336, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842657

RESUMO

Cationic non-viral vectors show great potential to introduce genetic material into cells, due to their ability to transport large amounts of genetic material and their high synthetic versatility. However, designing materials that are effective without showing toxic effects or undergoing non-specific interactions when applied systemically remains a challenge. The introduction of shielding polymers such as polyethylene glycol (PEG) can enhance biocompatibility and circulation time, however, often impairs transfection efficiency. Herein, a multicomponent polymer system is introduced, based on cationic and hydrophobic particles (P(nBMA46-co-MMA47-co-DMAEMA90), (PBMD)) with high delivery performance and a pH-responsive block copolymer (poly((N-acryloylmorpholine)-b-(2-(carboxy)ethyl acrylamide)) (P(NAM72-b-CEAm74), PNC)) as shielding system, with PNAM as alternative to PEG. The pH-sensitive polymer design promotes biocompatibility and excellent stability at extracellular conditions (pH 7.4) and also allows endosomal escape and thus high transfection efficiency under acidic conditions. PNC shielded particles are below 200 nm in diameter and showed stable pDNA complexation. Further, interaction with human erythrocytes at extracellular conditions (pH 7.4) was prevented, while acidic conditions (pH 6) enabled membrane leakage. The particles demonstrate transfection in adherent (HEK293T) as well as difficult-to-transfect suspension cells (K-562), with comparable or superior efficiency compared to commercial linear poly(ethylenimine) (LPEI). Besides, the toxicity of PNC-shielded particles was significantly minimized, in particular in K-562 cells and erythrocytes. In addition, a pilot in vivo experiment on bone marrow blood cells of mice that were injected with PNC-shielded particles, revealed slightly enhanced cell transfection in comparison to naked pDNA. This study demonstrates the applicability of cationic hydrophobic polymers for transfection of adherent and suspension cells in culture as well as in vivo by co-formulation with pH-responsive shielding polymers, without substantially compromising transfection performance.


Assuntos
Polietilenoglicóis , Polímeros , Animais , Cátions , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Polietilenoglicóis/química , Polímeros/química , Transfecção
15.
Anal Chim Acta ; 1205: 339741, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414386

RESUMO

Hydrodynamic and light scattering methods are urgently required for accurate characterization of nanoparticles (NPs) in the field of nanomedicine to unveil their sizes and distributions. A fundamental characterization approach in the field of nanomedicines is, next to standard batch dynamic light scattering (DLS) and increasingly more applied (asymmetrical flow) field-flow fractionation (FFF) coupled to multi-angle laser light scattering (MALLS), the utilization of an analytical ultracentrifuge (AUC). Here, we demonstrate the power of an AUC in comparison to batch DLS and FFF-MALLS to decipher, in detail, the size and dispersity of pharma-relevant, commercial and in-house prepared soft matter NPs, suitable for life science applications. In this study, size and dispersity of poly(lactic-co-glycolic acid) (PLGA) NPs and in-house prepared NPs, consisting of the commercially available pharmapolymer Eudragit® E or of a polymer of similar composition synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, were investigated. Simultaneously, an insight on the presence of the utilized surfactant on the NP formulations, which is usually limited with other techniques, could be achieved by multi-speed experiments with the AUC in one experimental setting. While the repeatability and ruggedness of observations with modern AUC instruments of the newest generation is demonstrated, the results are further underpinned by the classical relations of hydrodynamics. Investigations aiming at hydrodynamic diameters (from DLS) and radii of gyration (from FFF-MALLS) are critically discussed and compared to the repeatable and rugged investigations by an AUC. The latter is proven to provide a self-sufficient experimental approach for NP characterization in the field of nanomedicine based on absolute principles, compares well to FFF-MALLS, and can unravel issues in NP sizing that arise when more common techniques, such as DLS, are used.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Difusão Dinâmica da Luz , Fracionamento por Campo e Fluxo/métodos , Nanomedicina , Tamanho da Partícula
16.
Metabolites ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940579

RESUMO

Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100-PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin.

17.
J Mater Chem B ; 9(39): 8224-8236, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643200

RESUMO

In the present study, three biodegradable block copolymers composed of a poly(ethylene glycol) block and a copolypeptide block with varying compositions of cationic L-lysine (L-Lys) and hydrophobic benzyl-L-glutamate (Bzl-L-Glu) were designed for gene delivery applications. The polypeptides were synthesized by ring opening polymerization (ROP) and after orthogonal deprotection of Boc-L-Lys side chains, the polymer exhibited an amphiphilic character. To bind or encapsulate plasmid DNA (pDNA), different formulations were investigated: a nanoprecipitation and an emulsion technique using various organic solvents as well as an aqueous pH-controlled formulation method. The complex and nanoparticle (NP) formations were monitored by dynamic light scattering (DLS), and pDNA interaction was shown by gel electrophoresis and subsequent controlled release with heparin. The polypeptides were further tested for their cytotoxicity as well as biodegradability. The complexes and NPs presenting the most promising size distributions and pDNA binding ability were subsequently evaluated for their transfection efficiency in HEK293T cells. The highest transfection efficiencies were obtained with an aqueous formulation of the polypeptide containing the highest L-Lys content and lowest proportion of hydrophobic, helical structures (P1*), which is therefore a promising candidate for efficient gene delivery by biodegradable gene delivery vectors.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Peptídeos/química , Polietilenoglicóis/química , Transfecção , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Ágar , Técnicas de Transferência de Genes , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/química , Humanos , Lisina/química , Camundongos , Nanopartículas
18.
J Nanobiotechnology ; 19(1): 292, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579715

RESUMO

Cationic polymers have been widely studied for non-viral gene delivery due to their ability to bind genetic material and to interact with cellular membranes. However, their charged nature carries the risk of increased cytotoxicity and interaction with serum proteins, limiting their potential in vivo application. Therefore, hydrophilic or anionic shielding polymers are applied to counteract these effects. Herein, a series of micelle-forming and micelle-shielding polymers were synthesized via RAFT polymerization. The copolymer poly[(n-butyl acrylate)-b-(2-(dimethyl amino)ethyl acrylamide)] (P(nBA-b-DMAEAm)) was assembled into cationic micelles and different shielding polymers were applied, i.e., poly(acrylic acid) (PAA), poly(4-acryloyl morpholine) (PNAM) or P(NAM-b-AA) block copolymer. These systems were compared to a triblock terpolymer micelle comprising PAA as the middle block. The assemblies were investigated regarding their morphology, interaction with pDNA, cytotoxicity, transfection efficiency, polyplex uptake and endosomal escape. The naked cationic micelle exhibited superior transfection efficiency, but increased cytotoxicity. The addition of shielding polymers led to reduced toxicity. In particular, the triblock terpolymer micelle convinced with high cell viability and no significant loss in efficiency. The highest shielding effect was achieved by layering micelles with P(NAM-b-AA) supporting the colloidal stability at neutral zeta potential and completely restoring cell viability while maintaining moderate transfection efficiencies. The high potential of this micelle-layer-combination for gene delivery was illustrated for the first time.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Polímeros , Resinas Acrílicas , Animais , Cátions , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Plasmídeos , Polimerização , Transfecção
19.
Nanoscale ; 13(46): 19412-19429, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34591061

RESUMO

Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.


Assuntos
Técnicas de Transferência de Genes , Micelas , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Temperatura
20.
ACS Appl Mater Interfaces ; 13(30): 35233-35247, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283557

RESUMO

Responsive polymers, which become protonated at decreasing pH, are considered a milestone in the development of synthetic cell entry vectors. Exact correlations between their properties and their ability to escape the endosome, however, often remain elusive due to hydrophobic interactions or limitations in the design of water-soluble materials with suitable basicity. Here, we present a series of well-defined, hydrophilic polypiperazines, where systematic variation of the amino moiety facilitates an unprecedented fine-tuning of the basicity or pKa value within the physiologically relevant range (pH 6-7.4). Coincubation of HEK 293T cells with various probes, including small fluorophores or functioning proteins, revealed a rapid increase of endosomal release for polymers with pKa values above 6.5 or 7 in serum-free or serum-containing media, respectively. Similarly, cytotoxic effects became severe at increased pKa values (>7). Although the window for effective transport appears narrow, the discovered correlations offer a principal guideline for the design of effective polymers for endosomal escape.


Assuntos
Resinas Acrílicas/farmacologia , Endossomos/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Piperazinas/farmacologia , Ribonuclease Pancreático/metabolismo , Soroalbumina Bovina/metabolismo , Resinas Acrílicas/síntese química , Resinas Acrílicas/toxicidade , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Fluoresceínas/metabolismo , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Piperazinas/síntese química , Piperazinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA