Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675948

RESUMO

The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.


Assuntos
Vírus de RNA , Animais , Abelhas/virologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Vírus de RNA/patogenicidade , Genótipo , Interações Hospedeiro-Patógeno
2.
Proc Biol Sci ; 289(1969): 20212255, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35168401

RESUMO

Cross-species transmission of a pathogen from a reservoir to a recipient host species, spillover, can have major impacts on biodiversity, domestic species and human health. Deformed wing virus (DWV) is a panzootic RNA virus in honeybees that is causal in their elevated colony losses, and several correlative field studies have suggested spillover of DWV from managed honeybees to wild bee species such as bumblebees. Yet unequivocal demonstration of DWV spillover is lacking, while spillback, the transmission of DWV from a recipient back to the reservoir host, is rarely considered. Here, we show in fully crossed laboratory experiments that the transmission of DWV (genotype A) from honeybees to bumblebees occurs readily, yet we neither detected viral transmission from bumblebees to honeybees nor onward transmission from experimentally infected to uninoculated bumblebees. Our results support the potential for viral spillover from honeybees to other bee species in the field when robbing resources from heterospecific nests or when visiting the same flowers. They also underscore the importance of studies on the virulence of DWV in wild bee species so as to evaluate viral impact on individual and population fitness as well as viral adaption to new host species.


Assuntos
Vírus de RNA , Animais , Abelhas , Genótipo , Vírus de RNA/genética , Virulência
3.
Microorganisms ; 9(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920692

RESUMO

Adult honey bees host a remarkably consistent gut microbial community that is thought to benefit host health and provide protection against parasites and pathogens. Currently, however, we lack experimental evidence for the causal role of the gut microbiota in protecting the Western honey bees (Apis mellifera) against their viral pathogens. Here we set out to fill this knowledge gap by investigating how the gut microbiota modulates the virulence of a major honey bee viral pathogen, deformed wing virus (DWV). We found that, upon oral virus exposure, honey bee survival was significantly increased in bees with an experimentally established normal gut microbiota compared to control bees with a perturbed (dysbiotic) gut microbiota. Interestingly, viral titers were similar in bees with normal gut microbiota and dysbiotic bees, pointing to higher viral tolerance in bees with normal gut microbiota. Taken together, our results provide evidence for a positive role of the gut microbiota for honey bee fitness upon viral infection. We hypothesize that environmental stressors altering honey bee gut microbiota composition, e.g., antibiotics in beekeeping or pesticides in modern agriculture, could interact synergistically with pathogens, leading to negative effects on honey bee health and the epidemiology and impact of their viruses.

4.
Elife ; 92020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33138912

RESUMO

Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Glândulas Exócrinas/fisiologia , Comportamento Alimentar , Formiatos , Microbioma Gastrointestinal , Animais , Bactérias , Comportamento Animal , Concentração de Íons de Hidrogênio , Filogenia
5.
R Soc Open Sci ; 7(7): 200480, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874644

RESUMO

Pathogen spillover represents an important cause of biodiversity decline. For wild bee species such as bumblebees, many of which are in decline, correlational data point towards viral spillover from managed honeybees as a potential cause. Yet, impacts of these viruses on wild bees are rarely evaluated. Here, in a series of highly controlled laboratory infection assays with well-characterized viral inocula, we show that three viral types isolated from honeybees (deformed wing virus genotype A, deformed wing virus genotype B and black queen cell virus) readily replicate within hosts of the bumblebee Bombus terrestris. Impacts of these honeybee-derived viruses - either injected or fed - on the mortality of B. terrestris workers were, however, negligible and probably dependent on host condition. Our results highlight the potential threat of viral spillover from honeybees to novel wild bee species, though they also underscore the importance of additional studies on this and other wild bee species under field-realistic conditions to evaluate whether pathogen spillover has a negative impact on wild bee individuals and population fitness.

6.
Nutrients ; 12(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354152

RESUMO

(1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1-V3 and V3-V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and ß-diversity (Bray-Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in Ruminococcus, Fusicatenibacter, Faecalibacterium and Bacteroides and a reduction in Roseburia, Lachnospiracea and Blautia. The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.


Assuntos
Fibras na Dieta/administração & dosagem , Fibras na Dieta/farmacologia , Fezes/microbiologia , Galactanos/administração & dosagem , Galactanos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Mananas/administração & dosagem , Mananas/farmacologia , Gomas Vegetais/administração & dosagem , Gomas Vegetais/farmacologia , Prebióticos , Acetatos/metabolismo , Bacteroides/isolamento & purificação , Butiratos/metabolismo , Faecalibacterium/isolamento & purificação , Feminino , Humanos , Hidrólise , Masculino , Ruminococcus/isolamento & purificação , Solubilidade
7.
Elife ; 72018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29310753

RESUMO

In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.


Assuntos
Antibiose , Formigas/microbiologia , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Pupa/microbiologia , Animais , Comportamento Animal , Comportamento Social
8.
Naturwissenschaften ; 103(5-6): 46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27206570

RESUMO

Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.


Assuntos
Formigas/microbiologia , Suscetibilidade a Doenças , Fungos/fisiologia , Interações Hospedeiro-Parasita , Temperatura , Animais , Espécies Introduzidas , Análise de Sobrevida
9.
Insect Sci ; 22(3): 353-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25829258

RESUMO

Invasive alien species, such as the multicoloured Asian ladybird Harmonia axyridis, are often regarded as major drivers of biodiversity loss. Therefore understanding which characteristics or mechanisms contribute to their invasive success is important. Here the role of symbiotic microsporidia in the hemolymph of H. axyridis was investigated in the context of intraguild predation between wild-caught H. axyridis and the native ladybird species Coccinella septempunctata. The microsporidia were recently discussed to contribute to the unpalatability of Harmonia for other coccinellids during intraguild predation and to function as "biological weapons". In the present study, visual detection of microsporidia in hemolymph samples revealed that 73.5% of H. axyridis were infected. Intraguild predation experiments between larvae of the two species showed a significant competitive advantage for H. axyridis, even against larger larvae of C. septempunctata. Adult C. septempunctata always killed and fed on H. axyridis larvae. However only 11.4% (4 of 47) of C. septempunctata that fed on infected H. axyridis died within 4 months. In contrast to previous studies this suggests that microsporidia or harmonine, the chemical defense compound of H. axyridis, do not lead to death of C. septempunctata preying on larvae of H. axyridis. Instead our results support the idea that competitive advantage during intraguild predation greatly facilitates the success of H. axyridis and that this may help this highly invasive species to outcompete native species. The impact of microsporidia on Harmonia itself as well as on interspecific interactions require further studies.


Assuntos
Besouros/microbiologia , Espécies Introduzidas , Animais , Hemolinfa/microbiologia , Larva/microbiologia , Microsporídios/fisiologia , Comportamento Predatório , Simbiose
10.
Proc Biol Sci ; 282(1799): 20141976, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25473011

RESUMO

The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (ß-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens.


Assuntos
Formigas/microbiologia , Ascomicetos/fisiologia , Simbiose , Animais , Formigas/imunologia , Comportamento Animal , Asseio Animal , Interações Hospedeiro-Patógeno
11.
Trends Ecol Evol ; 29(11): 625-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25278329

RESUMO

External immune defence, such as antimicrobial secretions, is not generally viewed as part of the immune system. Nevertheless, it constitutes a first barrier to pathogens and manipulates the microbial environment. Hygienic measures from the protection of oneself or conspecifics, of the nesting site, or of stored food might be more efficient with secreted antimicrobials. Here, we argue that antimicrobial secretions represent an extended arm of the immune system, forming an underappreciated selective force in the evolution of immune systems. Integrating external immunity into the immune system and general host physiology provides an amenable concept for the understanding of immune system variation and life-history trade-offs. Future research should evaluate complementary or additive roles of antimicrobial secretions in relation to internal immunity.


Assuntos
Anti-Infecciosos/metabolismo , Imunidade/fisiologia , Microbiota/imunologia , Animais , Evolução Biológica , Meio Ambiente , Microbiota/efeitos dos fármacos , Simbiose/imunologia
12.
BMC Evol Biol ; 13: 225, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24125481

RESUMO

BACKGROUND: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Metarhizium/fisiologia , Animais , Formigas/classificação , Formigas/crescimento & desenvolvimento , Larva/microbiologia , Pupa/microbiologia
13.
Curr Biol ; 23(1): 76-82, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23246409

RESUMO

To fight infectious diseases, host immune defenses are employed at multiple levels. Sanitary behavior, such as pathogen avoidance and removal, acts as a first line of defense to prevent infection before activation of the physiological immune system. Insect societies have evolved a wide range of collective hygiene measures and intensive health care toward pathogen-exposed group members. One of the most common behaviors is allogrooming, in which nestmates remove infectious particles from the body surfaces of exposed individuals. Here we show that, in invasive garden ants, grooming of fungus-exposed brood is effective beyond the sheer mechanical removal of fungal conidiospores; it also includes chemical disinfection through the application of poison produced by the ants themselves. Formic acid is the main active component of the poison. It inhibits fungal growth of conidiospores remaining on the brood surface after grooming and also those collected in the mouth of the grooming ant. This dual function is achieved by uptake of the poison droplet into the mouth through acidopore self-grooming and subsequent application onto the infectious brood via brood grooming. This extraordinary behavior extends the current understanding of grooming and the establishment of social immunity in insect societies.


Assuntos
Formigas/fisiologia , Asseio Animal , Animais , Formigas/química , Formigas/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Espécies Introduzidas , Metarhizium , Comportamento Social , Toxinas Biológicas/biossíntese , Toxinas Biológicas/química
14.
PLoS Biol ; 10(4): e1001300, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509134

RESUMO

Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses ("variolation" or "inoculation").


Assuntos
Formigas/imunologia , Imunidade Ativa , Imunidade Coletiva , Metarhizium/imunologia , Animais , Formigas/microbiologia , Comportamento Animal , Catepsina L/genética , Catepsina L/metabolismo , Defensinas/genética , Defensinas/metabolismo , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Comportamento Social , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA