Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Harmful Algae ; 127: 102480, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544680

RESUMO

A bulletin communicating risk of toxic Pseudo-nitzschia blooms to shellfish harvest along the open coast of the Pacific Northwest region of the United States (the northeast Pacific Ocean spanning Washington and Oregon) is discussed. This Pacific Northwest Harmful Algal Blooms (PNW HAB) Bulletin is designed for shellfish managers with a focus on the razor clam fishery, but may also be informative to managers of the Dungeness crab fishery since domoic acid accumulation in crabs tends to lag accumulation in razor clams by a couple of weeks. The Bulletin complements beach phytoplankton monitoring programs by alerting coastal shellfish managers about adverse environmental conditions that could be conducive to a toxic Pseudo-nitzschia bloom. Beach monitoring programs are effective at determining when toxins have arrived at shellfish beaches, but a risk forecast based on near real-time biophysical information can provide managers with additional forewarning about potential future toxin outbreaks. Here, the approaches taken in constructing the risk forecasts, along with the reasoning and research behind them are presented. Updates to a historical PNW HAB Bulletin are described, as are the current workflow and the individual components of the updated Bulletin. Some successes and failures realized throughout the process are also pointed out for the benefit of the broader community. A self-assessment suggests that when the necessary data sources are available, the PNW HAB Bulletin provides an accurate forecast of risk associated with toxic Pseudo-nitzschia blooms. The Bulletin has proven beneficial to coastal shellfish managers by better informing decisions on sample collection, and harvest limits, openings, extensions, and closures.


Assuntos
Diatomáceas , Proliferação Nociva de Algas , Fitoplâncton , Washington , Pesqueiros
2.
Harmful Algae ; 124: 102388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164556

RESUMO

To date, the putative shellfish toxin azaspiracid 59 (AZA-59) produced by Azadinium poporum (Dinophyceae) has been the only AZA found in isolates from the Pacific Northwest coast of the USA (Northeast Pacific Ocean). Anecdotal reports of sporadic diarrhetic shellfish poisoning-like illness, with the absence of DSP toxin or Vibrio contamination, led to efforts to look for other potential toxins, such as AZAs, in water and shellfish from the region. A. poporum was found in Puget Sound and the outer coast of Washington State, USA, and a novel AZA (putative AZA-59) was detected in low quantities in SPATT resins and shellfish. Here, an A. poporum strain from Puget Sound was mass-cultured and AZA-59 was subsequently purified and structurally characterized. In vitro cytotoxicity of AZA-59 towards Jurkat T lymphocytes and acute intraperitoneal toxicity in mice in comparison to AZA-1 allowed the derivation of a provisional toxicity equivalency factor of 0.8 for AZA-59. Quantification of AZA-59 using ELISA and LC-MS/MS yielded reasonable quantitative results when AZA-1 was used as an external reference standard. This study assesses the toxic potency of AZA-59 and will inform guidelines for its potential monitoring in case of increasing toxin levels in edible shellfish.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Frutos do Mar/análise , Dinoflagellida/química , Washington
3.
Harmful Algae ; 125: 102431, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220984

RESUMO

The toxigenic diatom Pseudo-nitzschia australis (Frenguelli), isolated from the California Current System (CCS), was examined in unialgal laboratory cultures to evaluate domoic acid (DA) production and cellular growth as a response to macronutrient limitation. Toxic blooms of P. australis are common in the coastal waters of eastern boundary upwelling systems (EBUS), including those of the CCS off the west coast of the United States where limitation by macronutrients, specifically silicon as silicic acid [Si(OH)4], or phosphorus as phosphate [PO43-], has been suggested to increase the production of DA by these diatoms. This study used batch cultures grown under conditions of macronutrient sufficiency and limitation, expected during and after a natural upwelling event, to determine whether PO43- or Si(OH)4 deficiency enhances the production of DA and the expected risk of DA toxicity in natural coastal ecosystems. These controlled lab studies demonstrate that despite increases in cell-specific DA concentrations found during the nutrient-limited stationary phase, DA production rates did not increase due to either PO43- or Si(OH)4 limitation, and total DA production rates were statistically greater during the nutrient-replete, exponential growth phase compared to the nutrient-limited, stationary phase. In addition, the relative contribution of particulate DA (pDA) and dissolved DA (dDA) varied markedly with growth phase, where the contribution of pDA to total DA (pDA + dDA) declined from an average of 70% under P- and Si-replete conditions to 49% under P-limited conditions and 39% under Si-limited conditions. These laboratory results demonstrate that macronutrient sufficiency does not regulate the biosynthetic production of DA by this strain of P. australis. This finding, together with a comparative analysis of the various equations employed to estimate DA production, suggests that the current paradigm of increased toxigenicity due to macronutrient limitation be carefully re-examined, particularly when attempting to forecast the toxic threat of DA to coastal ecosystems as a function of macronutrient availability.


Assuntos
Diatomáceas , Ecossistema , Técnicas de Cultura Celular por Lotes , Nutrientes
4.
Toxins (Basel) ; 15(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36977080

RESUMO

The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the "eyes on the coast". This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Fitoplâncton , Washington , Frutos do Mar/análise , Intoxicação por Frutos do Mar/epidemiologia , Intoxicação por Frutos do Mar/etiologia , Alimentos Marinhos/análise , Proliferação Nociva de Algas
5.
J Phycol ; 59(4): 658-680, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36964950

RESUMO

Multiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp. isolated from three US coastal regions that have experienced DSP events: the Northeast/Mid-Atlantic, the Gulf of Mexico, and the Pacific Northwest. Using a combination of morphometric and DNA-based evidence, seven Northeast/Mid-Atlantic isolates and four Pacific Northwest isolates were classified as D. acuminata, a total of four isolates from two coasts were classified as D. norvegica, two isolates from the Pacific Northwest coast were identified as D. fortii, and three isolates from the Gulf of Mexico were identified as D. ovum and D. caudata. Toxin profiles of D. acuminata and D. norvegica varied by their geographical origin within the United States. Cross-regional comparison of toxin profiles was not possible with the other three species; however, within each region, distinct species-conserved profiles for isolates of D. fortii, D. ovum, and D. caudata were observed. Historical and recent data from various State and Tribal monitoring programs were compiled and compared, including maximum recorded cell abundances of Dinophysis spp., maximum concentrations of OA/DTXs recorded in commercial shellfish species, and durations of harvesting closures, to provide perspective regarding potential for DSP impacts to regional public health and shellfish industry.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Estados Unidos , Humanos , Toxinas Marinhas , Ácido Okadáico , Frutos do Mar/análise
6.
Harmful Algae ; 119: 102334, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344195

RESUMO

In the Pacific Northwest, blooms of the diatom Pseudo-nitzschia (PN) sometimes produce domoic acid, a neurotoxin that causes amnesic shellfish poisoning, leading to a Harmful Algal Bloom (HAB) event. The Pacific Northwest (PNW) HAB Bulletin project, a partnership between academic, government, and tribal stakeholders, uses a combination of beach and offshore monitoring data and ocean forecast modeling to better understand the formation, evolution, and transport of HABs in this region. This project produces periodic Bulletins to inform local stakeholders of current and forecasted conditions. The goal of this study was to help improve how the forecast model is used in the Bulletin's preparation through a retrospective particle-tracking experiment. Using past observations of beach PN cell counts, events were identified that likely originated in the Juan de Fuca eddy, a known PN hotspot, and then particle tracks were used in the model to simulate these events. A variety of "beaching definitions" were tested, based on both water depth and distance offshore, to define when a particle in the model was close enough to the coast that it was likely to correspond to cells appearing in the intertidal zone and in shellfish diets, as well as a variety of observed PN cell thresholds to determine what cell count should be used to describe an event that would warrant further action. The skill of these criteria was assessed by determining the fraction of true positives, true negatives, false positives, and false negatives within the model in comparison with observations, as well as a variety of derived model performance metrics. This analysis suggested that for our stakeholders' purposes, the most useful beaching definition is the 30 m isobath and the most useful PN cell threshold for coincident field-based sample PN density estimates is 10,000 PN cells/L. Lastly, the performance of a medium-resolution (1.5 km horizontal resolution) version of the model was compared with that of a high-resolution (0.5 km horizontal resolution) version, the latter currently used in forecasting for the PNW HAB Bulletin project. This analysis includes a direct comparison of the two model resolutions for one overlapping year (2017). These results suggested that a narrower, more realistic beaching definition is most useful in a high-resolution model, while a wider beaching definition is more appropriate in a lower resolution model like the medium-resolution version used in this analysis. Overall, this analysis demonstrated the importance of incorporating stakeholder needs into the statistical approach in order to generate the most effective decision-support information from oceanographic modeling.


Assuntos
Diatomáceas , Intoxicação por Frutos do Mar , Proliferação Nociva de Algas , Estudos Retrospectivos , Previsões
7.
Harmful Algae ; 114: 102226, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550293

RESUMO

Harmful algal blooms (HABs) can produce biotoxins that accumulate in seafood species targeted by commercial, recreational, and subsistence fisheries and pose an increasing risk to public health as well as fisher livelihoods, recreational opportunities, and food security. Designing biotoxin monitoring and management programs that protect public health with minimal impacts to the fishing communities that underpin coastal livelihoods and food systems is critically important, especially in regions with worsening HABs due to climate change. This study reviews the history of domoic acid monitoring and management in the highly lucrative U.S. West Coast Dungeness crab fishery and highlights three changes made to these programs that efficiently and adaptively manage mounting HAB risk: (1) expanded spatial-temporal frequency of monitoring; (2) delineation of clear management zones; and (3) authorization of evisceration orders as a strategy to mitigate economic impacts. Simulation models grounded in historical data were used to measure the value of monitoring information in facilitating efficient domoic acid management. Power analysis confirmed that surveys sampling 6 crabs (the current protocol) have high power to correctly diagnose contamination levels and recommend appropriate management actions. Across a range of contamination scenarios, increasing the spatial-temporal frequency of monitoring allowed management to respond more quickly to changing toxin levels and to protect public health with the least impact on fishing opportunities. These results highlight the powerful yet underutilized role of simulation testing and power analysis in designing efficient biotoxin monitoring programs, demonstrating the credibility of these programs to stakeholders, and justifying their expense to policymakers.


Assuntos
Pesqueiros , Proliferação Nociva de Algas
8.
Harmful Algae ; 105: 102032, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303512

RESUMO

Summer bivalve shellfish mortalities have been observed in Puget Sound for nearly a century and attempts to understand and mitigate these losses have been only partially successful. Likewise, the understanding of the environmental conditions triggering shellfish mortalities and successful strategies for their mitigation are incomplete. In the literature, phytoplankton have played only a cursory role in summer shellfish mortalities in Washington State because spawning stress and bacteria were thought to be the primary causes. In recent years, the occurrence of Protoceratium reticulatum (Claparede & Lachmann) Buetschli and Akashiwo sanguinea (Hirasaka) Hansen & Moestrup, have been documented by the SoundToxins research and monitoring partnership in increasing numbers and duration and have been associated with declining shellfish health or mortality at various sites in Puget Sound. Blooms of these species occur primarily in summer months and have been shown to cause mass mortalities of shellfish in the U.S. and other parts of the world. In 2016-2017, yessotoxins (YTX) were measured in several species of Puget Sound bivalve shellfish, with a maximum concentration of 2.20 mg/kg in blue mussels, a value below the regulatory limit of 3.75 mg/kg established by the European Union for human health protection but documented to cause shellfish mortalities in other locations around the world. In July 2019, a bloom of P. reticulatum coincided with a summer shellfish mortality event, involving a dramatic surfacing of stressed, gaping Manila clams, suggesting that YTX could be the cause. YTX concentrations in their tissues were measured at a maximum of 0.28 mg/kg and histology of these clams demonstrated damage to digestive glands. A culture of P. reticulatum, isolated from North Bay during this massive bloom and shellfish mortality event, showed YTX reaching 26.6 pg/cell, the highest recorded toxin quota measured in the U.S. to date. Concentrations of YTX in phytoplankton samples reached a maximum of 920 ng/L during a P. reticulatum bloom in Mystery Bay on 13 August 2019 when cell abundance reached 1.82 million cells/L. The highest cellular YTX quota during that bloom that lasted into September was 10.8 pg/cell on 3 Sept 2019. Shellfish producers in Washington State have also noted shellfish larvae mortalities due to A. sanguinea passing through filtration intake systems into hatchery facilities. Early warning of shellfish-killing harmful algal bloom (HAB) presence in Puget Sound, through partnerships such as SoundToxins, provides options for shellfish growers to mitigate their effects through early harvest, movement of shellstock to upland facilities, or enhanced filtration at aquaculture facilities.


Assuntos
Toxinas Marinhas , Fitoplâncton , Cromatografia Líquida , Humanos , Toxinas Marinhas/análise , Frutos do Mar/análise , Washington
9.
Harmful Algae ; 102: 101975, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33875183

RESUMO

Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990-2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida - Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921-2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.


Assuntos
Ecossistema , Proliferação Nociva de Algas , Animais , Florida , Golfo do México , Oceanos e Mares , Estados Unidos , Virginia
10.
Artigo em Inglês | MEDLINE | ID: mdl-33800838

RESUMO

The most proactive approach to resolving current health and climate crises will require a long view, focused on establishing and fostering partnerships to identify and eliminate root causes of the disconnect between humans and nature. We describe the lessons learned through a unique scientific partnership that addresses a specific crisis, harmful algal blooms (HABs), along the northeast Pacific Ocean coast, that blends current-day technology with observational knowledge of Indigenous communities. This integrative scientific strategy resulted in creative solutions for forecasting and managing HAB risk in the Pacific Northwest as a part of the US Ocean and Human Health (OHH) program. Specific OHH projects focused on: (1) understanding genetic responses of tribal members to toxins in the marine environment, (2) knowledge sharing by elders during youth camps; (3) establishing an early warning program to alert resource managers of HABs are explicit examples of proactive strategies used to address environmental problems. The research and monitoring projects with tribal communities taught the collaborating non-Indigenous scientists the value of reciprocity, highlighting both the benefits from and protection of oceans that promote our well-being. Effective global oceans and human health initiatives require a collective action that gives equal respect to all voices to promote forward thinking solutions for ocean health.


Assuntos
Proliferação Nociva de Algas , Adolescente , Idoso , Humanos , Noroeste dos Estados Unidos , Oceanos e Mares , Oceano Pacífico
11.
Artigo em Inglês | MEDLINE | ID: mdl-37359131

RESUMO

Global trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985-2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort. Varying and contrasting regional trends were driven by differences in bloom species, type and emergent impacts. Our findings suggest that intensified monitoring efforts associated with increased aquaculture production are responsible for the perceived increase in harmful algae events and that there is no empirical support for broad statements regarding increasing global trends. Instead, trends need to be considered regionally and at the species level.

12.
Harmful Algae ; 98: 101874, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33129464

RESUMO

Azaspiracids, produced by some species of the dinoflagellate genera Azadinium and Amphidoma, can cause a syndrome in humans called azaspiracid shellfish poisoning (AZP). In 1995, mussels from the Irish west coast contaminated with azaspiracids were, for the first time, linked to this human illness that has symptoms of nausea, vomiting, severe diarrhea, and stomach cramps. The only confirmed cases of AZP to date in the United States occurred in Washington State in 2008 from mussels imported from Ireland. Shortly after this case, several others involving similar gastrointestinal symptoms were reported by shellfish consumers from Washington State. However, no detectable diarrhetic shellfish toxins or Vibrio contamination were found. Cursory analysis of Solid Phase Adsorption Toxin Tracking (SPATT) samplers suggested the presence of azaspiracids in Washington State waters and motivated a study to evaluate the presence and distribution of Azadinium species in the region. During the spring and summer months of 2014-2015, quantitative polymerase chain reaction (qPCR) analyses detected the presence of the toxigenic species Azadinium poporum and A. spinosum on the outer coast and throughout the inland waters of Washington State. In 2016-2018, standard curves developed using A. poporum isolated from Puget Sound and A. spinosum isolated from the North Sea were used to quantify abundances of up to 10,525 cells L-1 of A. poporum and 156 cells L-1 of A. spinosum at shore-based sites. Abundances up to 1,206 cells L-1 of A. poporum and 30 cells L-1 of A. spinosum were measured in the coastal waters of the Pacific Northwest in 2017. Other harmful genera, including Alexandrium, Dinophysis, and Pseudo-nitzschia, were observed using light microscopy at coastal sites where A. poporum was also observed. In some samples where both A. poporum and A. spinosum were absent, an Amphidomataceae-specific qPCR assay indicated that other species of Azadinium or Amphidoma were present. The identification of Azadinium species in the PNW demonstrates the need to assess their toxicity and to incorporate their routine detection in monitoring programs to aid resource managers in mitigating risks to azaspiracid shellfish poisoning in this region.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Irlanda , Frutos do Mar , Washington
13.
Harmful Algae ; 91: 101591, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057339

RESUMO

Time series now have sufficient duration to determine harmful algal bloom (HAB) responses to changing climate conditions, including warming, stratification intensity, freshwater inputs and natural patterns of climate variability, such as the El Niño Southern Oscillation and Pacific Decadal Oscillation. Against the context of time series, such as those available from phytoplankton monitoring, dinoflagellate cyst records, the Continuous Plankton Recorder surveys, and shellfish toxin records, it is possible to identify extreme events that are significant departures from long-term means. Extreme weather events can mimic future climate conditions and provide a "dress rehearsal" for understanding future frequency, intensity and geographic extent of HABs. Three case studies of extreme HAB events are described in detail to explore the drivers and impacts of these oceanic outliers that may become more common in the future. One example is the chain-forming diatom of the genus Pseudo-nitzschia in the U.S. Pacific Northwest and its response to the 2014-16 northeast Pacific marine heat wave. The other two case studies are pelagic flagellates. Highly potent Alexandrium catenella group 1 dinoflagellate blooms (up to 150 mg/kg PST in mussels; 4 human poisonings) during 2012-17 created havoc for the seafood industry in Tasmania, south-eastern Australia, in a poorly monitored area where such problems were previously unknown. Early evidence suggests that changes in water column stratification during the cold winter-spring season are driving new blooms caused by a previously cryptic species. An expansion of Pseudochattonella cf. verruculosa to the south and A. catenella to the north over the past several years resulted in the convergence of both species to cause the most catastrophic event in the history of the Chilean aquaculture in the austral summer of 2016. Together, these two massive blooms were colloquially known as the "Godzilla-Red tide event", resulting in the largest fish farm mortality ever recorded worldwide, equivalent to an export loss of USD$800 million which when combined with shellfish toxicity, resulted in major social unrest and rioting. Both blooms were linked to the strong El Niño event and the positive phase of the Southern Annular Mode, the latter an indicator of anthropogenic climate change in the southeastern Pacific region. For each of these three examples, representing recent catastrophic events in geographically distinct regions, additional targeted monitoring was employed to improve the understanding of the climate drivers and mechanisms that gave rise to the event and to document the societal response. Scientists must be poised to study future extreme HAB events as these natural experiments provide unique opportunities to define and test multifactorial drivers of blooms.


Assuntos
Mudança Climática , Proliferação Nociva de Algas , Chile , Humanos , Noroeste dos Estados Unidos , Oceanos e Mares
14.
Harmful Algae ; 91: 101632, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057342

RESUMO

There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends.


Assuntos
Proliferação Nociva de Algas , Água do Mar , Mudança Climática , Humanos , Concentração de Íons de Hidrogênio , Fitoplâncton
15.
Harmful Algae ; 89: 101665, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672233

RESUMO

Azaspiracids (AZA) are novel lipophilic polyether marine biotoxins associated with azaspiracid shellfish poisoning (AZP). Azaspiracid-59 (AZA-59) is a new AZA that was recently detected in strains of Azadinium poporum from Puget Sound, Washington State. In order to understand how environmental factors affect AZA abundances in Puget Sound, a laboratory experiment was conducted with two local strains of A. poporum to estimate the growth rate and AZA-59 (both intra- and extracellular) cell quotas along temperature and salinity gradients. Both strains of A. poporum grew across a wide range of temperatures (6.7 °C to 25.0 °C), and salinities (15 to 35). Growth rates increased with increasing temperature up to 20.0 °C, with a range from 0.10 d-1 to 0.42 d-1. Both strains of A. poporum showed variable growth rates from 0.26 d-1 to 0.38 d-1 at salinities from 15 to 35. The percentage of intracellular AZA-59 in both strains was generally higher in exponential than in stationary phase along temperature and salinity gradients, indicating higher retention of toxin in actively growing cells. Cellular toxin quotas varied by strain in both the temperature and salinity treatments but were highest at the lowest growth rates, especially for the faster growing strain, NWFSC1011. Consistent with laboratory experiments, field investigations in Sequim Bay, WA, during 2016-2018 showed that A. poporum was detected when salinity and temperature became favorable to higher growth rates in June and July. Although current field data of A. poporum in Puget Sound indicate a generally low abundance, the potential of local A. poporum to adapt to and grow in a wide range of temperature and salinity may open future windows for blooms. Although increased temperatures, anticipated for the Puget Sound region over the next decades, will enhance the growth of A. poporum, these higher temperatures will not necessarily support higher toxin cell quotas. Additional sampling and assessment of the total toxicity of AZA-59 will provide the basis for a more accurate estimation of risk for azaspiracid poisoning in Puget Sound shellfish.


Assuntos
Toxinas Marinhas , Salinidade , Compostos de Espiro , Temperatura , Washington
16.
Harmful Algae ; 84: 139-150, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31128798

RESUMO

The influence of algicidal and growth-inhibiting bacteria in a seagrass (Zostera marina) bed, and their capability of controlling blooms of the fish-killing raphidophyte flagellate, Chattonella antiqua, were examined in laboratory microcosm experiments. Bacterial communities in seawater collected from the seagrass bed and Z. marina biofilm suppressed artificial Chattonella blooms in the presence of their natural competitors and predators. Phylogenetic analysis suggest that considerable numbers of bacteria that suppress Chattonella, including algicidal or growth-inhibiting bacteria isolated from seagrass biofilm and seawater from the seagrass bed, are members of Proteobacteria that can decompose lignocellulosic compounds. A direct comparison of partial 16S rRNA gene sequences (500 bp) revealed that the growth-limiting bacterium (strain ZM101) isolated from Z. marina biofilm belonged to the genus Phaeobacter (Alphaproteobacteria) showed 100% similarity with strains of growth-limiting bacteria isolated from seawater of both the seagrass bed and nearshore region, suggesting that the origin of these growth-limiting bacteria are the seagrass biofilm or seawater surrounding the seagrass bed. This study demonstrates that Chattonella growth-limiting bacteria living on seagrass biofilm and in the adjacent seawater can suppress Chattonella blooms, suggesting the possibility of Chattonella bloom prevention through restoration, protection, or introduction of seagrass in coastal areas.


Assuntos
Microbiota , Estramenópilas , Animais , Filogenia , RNA Ribossômico 16S , Água do Mar
17.
Harmful Algae ; 79: 105-114, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420012

RESUMO

Blooms of Pseudo-nitzschia species are frequent, but presently unpredictable, in the Juan de Fuca Eddy region off the coasts of Washington (US) and British Columbia (Canada). This upwelling eddy region is proposed to be the bloom commencement site, before cells are entrained into the coastal surface currents. During a shipboard study, we characterized the different stages of the Pseudo-nitzschia bloom development from its initiation and intensification, to its eventual sinking and dissipation. Specifically, we followed a water mass using lagrangian ARGOS-tracked drifters released at the eddy water mass and quantified production of dissolved and particulate domoic acid, and the physiological status of the Pseudo-nitzschia cells with regards to photosynthesis, nutrient needs and sinking rates, along with its relationship with competing species - in this case, the marine euglenoid, Eutreptiella spp. The drifter study allows for an interpretation of the presence or absence of Pseudo-nitzschia and domoic acid against active environmental factors - particularly copper and iron.


Assuntos
Diatomáceas/fisiologia , Proliferação Nociva de Algas , Ácido Caínico/análogos & derivados , Intoxicação por Frutos do Mar , Colúmbia Britânica , Diatomáceas/química , Ácido Caínico/metabolismo , Fotossíntese , Washington
18.
Harmful Algae ; 74: 46-57, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29724342

RESUMO

Intense blooms of the heterotrophic dinoflagellate, green Noctiluca scintillans, have been reported annually in the Northern Arabian Sea since the early 2000s. Although not known to produce organic toxins, these blooms are still categorized as a harmful due to their association with massive fish mortalities. Recent work has attributed these blooms to the vertical expansion of the oxygen minimum zone, driven by cultural eutrophication from major coastal cities in western India. As diatoms are preferred prey of green Noctiluca scintillans, more frequent blooms of this mixotroph will likely impact the productivity of important fisheries in the region. The present study uses a satellite algorithm to determine the distribution of both diatom and green Noctiluca blooms in the Northeastern Arabian Sea from 2009 to 2016. The results from shipboard microscopy of phytoplankton community composition were used to validate the satellite estimates. The satellite algorithm showed 76% accuracy for detection of green Noctiluca and 92% for diatoms. Shipboard measurements and data from biogeochemical-Argo floats were used to assess the relationship between oxygen concentrations and green Noctiluca blooms in the Northeastern Arabian Sea. Regardless of the presence of a Noctiluca bloom, the dissolved oxygen in the photic zone was always >70% saturated, with an average oxygen saturation >90%. The variability in the relative abundance of diatoms and green Noctiluca is not correlated with changes in oxygen concentration. These findings provide no evidence that cultural eutrophication has contributed to the decadal scale shifts in plankton composition in the Northeastern Arabian Sea oceanic waters. Conversely, the climatic warming of surface waters would have intensified stratification, thereby reducing net nutrient flux to the photic zone and decreasing silicate to nitrate ratios (Si:N); both factors that could increase the competitive advantage of the mixotroph, green Noctiluca, over diatoms. If so, the decadal-scale trajectory of phytoplankton community composition in the Northeastern Arabian Sea may be a harbinger of future climate-driven change in other productive oceanic systems.


Assuntos
Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Monitoramento Ambiental , Proliferação Nociva de Algas/fisiologia , Água do Mar/química , Anaerobiose , Oceano Índico , Fitoplâncton/fisiologia , Estações do Ano
19.
Harmful Algae ; 68: 152-167, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28962976

RESUMO

The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC-MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/toxicidade , Compostos de Espiro/toxicidade , Dinoflagellida/isolamento & purificação , Dinoflagellida/ultraestrutura , Geografia , Funções Verossimilhança , Toxinas Marinhas/química , Conformação de Ácido Nucleico , Filogenia , Compostos de Espiro/química , Washington
20.
Protist ; 168(2): 197-205, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285260

RESUMO

Microsatellites are commonly used markers in population genetics and are increasingly being employed to determine population structure in phytoplankton populations. We have developed seven polymorphic microsatellite markers for the domoic-acid producing diatom Pseudo-nitzschia australis. Using these markers, thirty P. australis isolates were genotyped, 10 isolates were from Monterey Bay, California and 20 were from off the northern coast of Oregon. The number of alleles per locus ranged from two to eight and observed heterozygosities ranged from 0.11 to 0.70. All but two of the isolates were genetically distinct and initial population differentiation analysis indicated no significant differences between the Pacific Northwest isolates and the Monterey Bay isolates. Pseudo-nitzschia australis microsatellites appear to be species specific based on cross amplification tests with Pseudo-nitzschia fraudulenta (Cleve) Hasle, Pseudo-nitzschia seriata (Cleve) H.Peragallo, Pseudo-nitzschia pungens (Grunow ex Cleve) and Pseudo-nitzschia multiseries (Hasle) Hasle.


Assuntos
Diatomáceas/genética , Variação Genética , Repetições de Microssatélites/genética , Alelos , California , Diatomáceas/classificação , Diatomáceas/metabolismo , Ácido Caínico/análogos & derivados , Ácido Caínico/metabolismo , Oregon , Oceano Pacífico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA