Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 121: 104517, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637079

RESUMO

Food preservatives are crucial in controlling microbial growth in processed foods to maintain food safety. Bacterial biofilms pose a threat in the food chain by facilitating persistence on a range of surfaces and food products. Cells in a biofilm are often highly tolerant of antimicrobials and can evolve in response to antimicrobial exposure. Little is known about the efficacy of preservatives against biofilms and their potential impact on the evolution of antimicrobial resistance. In this study we investigated how Salmonella enterica serovar Typhimurium responded to subinhibitory concentrations of four food preservatives (sodium chloride, potassium chloride, sodium nitrite or sodium lactate) when grown planktonically and in biofilms. We found that each preservative exerted a unique selective pressure on S. Typhimurium populations. There was a trade-off between biofilm formation and growth in the presence of three of the four preservatives, where prolonged preservative exposure resulted in reduced biofilm biomass and matrix production over time. All three preservatives selected for mutations in global stress response regulators rpoS and crp. There was no evidence for any selection of cross-resistance to antibiotics after preservative exposure. In conclusion, we showed that preservatives affect biofilm formation and bacterial growth in a compound specific manner. We showed trade-offs between biofilm formation and preservative tolerance, but no antibiotic cross-tolerance. This indicates that bacterial adaptation to continuous preservative exposure, is unlikely to affect food safety or contribute to antibiotic resistance.


Assuntos
Anti-Infecciosos , Salmonella typhimurium , Conservantes de Alimentos/farmacologia , Biofilmes , Antibacterianos/farmacologia , Bactérias
3.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428148

RESUMO

The human skin microbiome represents a variety of complex microbial ecosystems that play a key role in host health. Molecular methods to study these communities have been developed but have been largely limited to low-throughput quantification and short amplicon-based sequencing, providing limited functional information about the communities present. Shotgun metagenomic sequencing has emerged as a preferred method for microbiome studies as it provides more comprehensive information about the species/strains present in a niche and the genes they encode. However, the relatively low bacterial biomass of skin, in comparison to other areas such as the gut microbiome, makes obtaining sufficient DNA for shotgun metagenomic sequencing challenging. Here we describe an optimised high-throughput method for extraction of high molecular weight DNA suitable for shotgun metagenomic sequencing. We validated the performance of the extraction method, and analysis pipeline on skin swabs collected from both adults and babies. The pipeline effectively characterised the bacterial skin microbiota with a cost and throughput suitable for larger longitudinal sets of samples. Application of this method will allow greater insights into community compositions and functional capabilities of the skin microbiome.


Assuntos
Metagenômica , Microbiota , Adulto , Humanos , DNA Bacteriano/genética , Metagenômica/métodos , Peso Molecular , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética , DNA
4.
Nat Rev Microbiol ; 21(5): 280-295, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36411397

RESUMO

Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.


Assuntos
Antibacterianos , Bactérias , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Saúde Global
5.
NPJ Antimicrob Resist ; 1(1): 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38686215

RESUMO

Antibiotic resistance is a pressing healthcare challenge and is mediated by various mechanisms, including the active export of drugs via multidrug efflux systems, which prevent drug accumulation within the cell. Here, we studied how Salmonella evolved resistance to two key antibiotics, cefotaxime and azithromycin, when grown planktonically or as a biofilm. Resistance to both drugs emerged in both conditions and was associated with different substitutions within the efflux-associated transporter, AcrB. Azithromycin exposure selected for an R717L substitution, while cefotaxime for Q176K. Additional mutations in ramR or envZ accumulated concurrently with the R717L or Q176K substitutions respectively, resulting in clinical resistance to the selective antibiotics and cross-resistance to other drugs. Structural, genetic, and phenotypic analysis showed the two AcrB substitutions confer their benefits in profoundly different ways. R717L reduces steric barriers associated with transit through the substrate channel 2 of AcrB. Q176K increases binding energy for cefotaxime, improving recognition in the distal binding pocket, resulting in increased efflux efficiency. Finally, we show the R717 substitution is present in isolates recovered around the world.

6.
Microb Genom ; 8(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36125951

RESUMO

Single-cell DNA sequencing has the potential to reveal detailed hierarchical structures in evolving populations of cells. Single cell approaches are increasingly used to study clonal evolution in human ageing and cancer but have not yet been deployed to study evolving clonal microbial populations. Here, we present an approach for single bacterial genomic analysis for in vitro evolution experiments using FACS isolation of individual bacteria followed by whole-genome amplification and sequencing. We apply this to the experimental evolution of a hypermutator strain of Salmonella in response to antibiotic stress (ciprofloxacin). By analysing sequence polymorphisms in individual cells from populations we identified the presence and prevalence of sub-populations which have acquired polymorphisms in genes previously demonstrated to be associated with ciprofloxacin susceptibility. We were also able to identify that the population exposed to antibiotic stress was able to develop resistance whilst maintaining diversity. This population structure could not be resolved from bulk sequence data, and our results show how high-throughput single-cell sequencing can enhance experimental studies of bacterial evolution.


Assuntos
Genômica , Salmonella , Antibacterianos/farmacologia , Bactérias/genética , Ciprofloxacina , Genoma Bacteriano , Genômica/métodos , Humanos , Salmonella/genética
7.
NPJ Biofilms Microbiomes ; 8(1): 64, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982053

RESUMO

Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was known to positively regulate the production of the major virulence factor exotoxin A and now, through analysis of genetic changes between two sublines of P. aeruginosa PAO1 and functional complementation of swarming, we have identified a previously unknown role of ToxR in surface-associated motility in P. aeruginosa. Further analysis revealed that ToxR had an impact on swarming motility by regulating the Rhl quorum sensing system and subsequent production of rhamnolipid surfactants. Additionally, ToxR was found to tightly bind cyclic diguanylate (c-di-GMP) and negatively affect traits controlled by this second messenger including reducing biofilm formation and the expression of Psl and Pel exopolysaccharides, necessary for attachment and sessile communities matrix scaffolding, in P. aeruginosa. Moreover, a link between the post-transcriptional regulator RsmA and toxR expression via the alternative sigma factor PvdS, induced under iron-limiting conditions, is established. This study reveals the importance of ToxR in a sophisticated regulation of free-living and biofilm-associated lifestyles, appropriate for establishing acute or chronic P. aeruginosa infections.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Pseudomonas aeruginosa/fisiologia
8.
Microbiol Spectr ; 10(3): e0214521, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35475640

RESUMO

Cephalosporins are important beta lactam antibiotics, but resistance can be mediated by various mechanisms including production of beta lactamase enzymes, changes in membrane permeability or active efflux. We used an evolution model to study how Salmonella adapts to subinhibitory concentrations of cefotaxime in planktonic and biofilm conditions and characterized the mechanisms underpinning this adaptation. We found that Salmonella rapidly adapts to subinhibitory concentrations of cefotaxime via selection of multiple mutations within the CA-domain region of EnvZ. We showed that changes in this domain affect the ATPase activity of the enzyme and in turn impact OmpC, OmpF porin expression and hence membrane permeability leading to increased tolerance to cefotaxime and low-level resistance to different classes of antibiotics. Adaptation to cefotaxime through EnvZ also resulted in a significant cost to biofilm formation due to downregulation of curli. We assessed the role of the mutations identified on the activity of EnvZ by genetic characterization, biochemistry and in silico analysis and confirmed that they are responsible for the observed phenotypes. We observed that sublethal cefotaxime exposure selected for heterogeneity in populations with only a subpopulation carrying mutations within EnvZ and being resistant to cefotaxime. Population structure and composition dynamically changed depending on the presence of the selection pressure, once selected, resistant subpopulations were maintained even in extended passage without drug. IMPORTANCE Understanding mechanisms of antibiotic resistance is crucial to guide how best to use antibiotics to minimize emergence of resistance. We used a laboratory evolution system to study how Salmonella responds to cefotaxime in both planktonic and biofilm conditions. In both contexts, we observed rapid selection of mutants within a single hot spot within envZ. The mutations selected altered EnvZ which in turn triggers changes in porin production at the outer membrane. Emergence of mutations within this region was repeatedly observed in parallel lineages in different conditions. We used a combination of genetics, biochemistry, phenotyping and structural analysis to understand the mechanisms. This data show that the changes we observe provide resistance to cefotaxime but come at a cost to biofilm formation and the fitness of mutants changes greatly depending on the presence or absence of a selective drug. Studying how resistance emerges can inform selective outcomes in the real world.


Assuntos
Proteínas da Membrana Bacteriana Externa , Cefotaxima , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Cefotaxima/farmacologia , Resistência Microbiana a Medicamentos , Mutação , Porinas/genética , Salmonella
9.
mBio ; 12(5): e0260821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634938

RESUMO

For antibiotics with intracellular targets, effective treatment of bacterial infections requires the drug to accumulate to a high concentration inside cells. Bacteria produce a complex cell envelope and possess drug export efflux pumps to limit drug accumulation inside cells. Decreasing cell envelope permeability and increasing efflux pump activity can reduce intracellular accumulation of antibiotics and are commonly seen in antibiotic-resistant strains. Here, we show that the balance between influx and efflux differs depending on bacterial growth phase in Gram-negative bacteria. Accumulation of the fluorescent compound ethidium bromide (EtBr) was measured in Salmonella enterica serovar Typhimurium SL1344 (wild type) and efflux deficient (ΔacrB) strains during growth. In SL1344, EtBr accumulation remained low, regardless of growth phase, and did not correlate with acrAB transcription. EtBr accumulation in the ΔacrB strains was high in exponential phase but dropped sharply later in growth, with no significant difference from that in SL1344 in stationary phase. Low EtBr accumulation in stationary phase was not due to the upregulation of other efflux pumps but instead was due to decreased permeability of the envelope in stationary phase. Transcriptome sequencing (RNA-seq) identified changes in expression of several pathways that remodel the envelope in stationary phase, leading to lower permeability. IMPORTANCE This study shows that efflux is important for maintaining low intracellular accumulation only in actively growing cells and that envelope permeability is the predominant factor in stationary-phase cells. This conclusion means that (i) antibiotics with intracellular targets may be less effective in complex infections with nongrowing or slow-growing bacteria, where intracellular accumulation may be low; (ii) efflux inhibitors may be successful in potentiating the activity of existing antibiotics, but potentially only for bacterial infections where cells are actively growing; and (iii) the remodeling of the cell envelope prior to stationary phase could provide novel drug targets.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Transporte Biológico , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Salmonella typhimurium/efeitos dos fármacos
10.
NPJ Biofilms Microbiomes ; 7(1): 3, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431848

RESUMO

Most bacteria in nature exist in biofilms, which are inherently tolerant to antibiotics. There is currently very limited understanding of how biofilms evolve in response to sub-lethal concentrations of antimicrobials. In this study, we use a biofilm evolution model to study the effects of sub-inhibitory concentrations of three antibiotics on Salmonella Typhimurium biofilms. We show that biofilms rapidly evolve resistance to each antibiotic they are exposed to, demonstrating a strong selective pressure on biofilms from low antibiotic concentrations. While all antibiotics tested select for clinical resistance, there is no common mechanism. Adaptation to antimicrobials, however, has a marked cost for other clinically important phenotypes, including biofilm formation and virulence. Cefotaxime selects mutants with the greatest deficit in biofilm formation followed by azithromycin and then ciprofloxacin. Understanding the impacts of exposure of biofilms to antibiotics will help understand evolutionary trajectories and may help guide how best to use antibiotics in a biofilm context. Experimental evolution in combination with whole-genome sequencing is a powerful tool for the prediction of evolution trajectories associated with antibiotic resistance in biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Evolução Biológica , Modelos Biológicos , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Virulência/efeitos dos fármacos
11.
Microbiology (Reading) ; 166(12): 1115-1120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33226934

RESUMO

Recombineering using bacteriophage lambda Red recombinase (λ-Red) uses homologous recombination to manipulate bacterial genomes and is commonly applied to disrupt genes to elucidate their function. This is often followed by the introduction of a wild-type copy of the gene on a plasmid to complement its function. This is often not, however, at a native copy number and the introduction of a chromosomal version of a gene can be a desirable solution to provide wild-type copy expression levels of an allele in trans. Here, we present a simple methodology based on the λ-Red-based 'gene doctoring' technique, where we developed tools used for chromosomal tagging in a conserved locus downstream of glmS and found no impact on a variety of important phenotypes. The tools described provide an easy, quick and inexpensive method of chromosomal modification for the creation of a library of insertion mutants to study gene function.


Assuntos
Cromossomos Bacterianos/genética , Enterobacteriaceae/genética , Técnicas Genéticas , Plasmídeos/genética , Bacteriófago lambda/genética , Genes Reporter/genética , Teste de Complementação Genética , Recombinação Homóloga , Mutagênese Insercional , Fenótipo
12.
BMC Biotechnol ; 20(1): 54, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028286

RESUMO

BACKGROUND: Gene doctoring is an efficient recombination-based genetic engineering approach to mutagenesis of the bacterial chromosome that combines the λ-Red recombination system with a suicide donor plasmid that is cleaved in vivo to generate linear DNA fragments suitable for recombination. The use of a suicide donor plasmid makes Gene Doctoring more efficient than other recombineering technologies. However, generation of donor plasmids typically requires multiple cloning and screening steps. RESULTS: We constructed a simplified acceptor plasmid, called pDOC-GG, for the assembly of multiple DNA fragments precisely and simultaneously to form a donor plasmid using Golden Gate assembly. Successful constructs can easily be identified through blue-white screening. We demonstrated proof of principle by inserting a gene for green fluorescent protein into the chromosome of Escherichia coli. We also provided related genetic parts to assist in the construction of mutagenesis cassettes with a tetracycline-selectable marker. CONCLUSIONS: Our plasmid greatly simplifies the construction of Gene Doctoring donor plasmids and allows for the assembly of complex, multi-part insertion or deletion cassettes with a free choice of target sites and selection markers. The tools we developed are applicable to gene editing for a wide variety of purposes in Enterobacteriaceae and potentially in other diverse bacterial families.


Assuntos
Engenharia Genética , Mutagênese , Bactérias , Cromossomos , DNA , Enterobacteriaceae , Escherichia coli/genética , Deleção de Genes , Edição de Genes , Vetores Genéticos , Mutagênese Insercional , Plasmídeos , Sequenciamento Completo do Genoma
13.
J Antimicrob Chemother ; 75(10): 2773-2779, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747937

RESUMO

BACKGROUND: Bacterial heteroresistance has been increasingly identified as an important phenomenon for many antibiotic/bacterium combinations. OBJECTIVES: To investigate ciprofloxacin heteroresistance in Salmonella and characterize mechanisms contributing to ciprofloxacin heteroresistance. METHODS: Ciprofloxacin-heteroresistant Salmonella were identified by population analysis profiling (PAP). Target mutations and the presence of PMQR genes were detected using PCR and sequencing. Expression of acrB, acrF and qnrS was conducted by quantitative RT-PCR. Competition ability and virulence were also compared using pyrosequencing, blue/white screening, adhesion and invasion assays and a Galleria model. Two subpopulations were whole-genome sequenced using Oxford Nanopore and Illumina platforms. RESULTS: PAP identified one Salmonella from food that yielded a subpopulation demonstrating heteroresistance to ciprofloxacin at a low frequency (10-9 to 10-7). WGS and PFGE analyses confirmed that the two subpopulations were isogenic, with six SNPs and two small deletions distinguishing the resistant from the susceptible. Both subpopulations possessed a T57S substitution in ParC and carried qnrS. The resistant subpopulation was distinguished by overexpression of acrB and acrF, a deletion within rsxC and altered expression of soxS. The resistant population had a competitive advantage against the parental population when grown in the presence of bile salts but was attenuated in the adhesion and invasion of human intestinal cells. CONCLUSIONS: We determined that heteroresistance resulted from a combination of mutations in fluoroquinolone target genes and overexpression of efflux pumps associated with a deletion in rsxC. This study warns that ciprofloxacin heteroresistance exists in Salmonella in the food chain and highlights the necessity for careful interpretation of antibiotic susceptibility.


Assuntos
Antibacterianos , Ciprofloxacina , Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo
14.
Sci Rep ; 9(1): 8096, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147571

RESUMO

Flagellum mediated motility is an essential trait for rhizosphere colonization by pseudomonads. Flagella synthesis is a complex and energetically expensive process that is tightly regulated. In Pseudomonas fluorescens, the regulatory cascade starts with the master regulatory protein FleQ that is in turn regulated by environmental signals through the Gac/Rsm and SadB pathways, which converge in the sigma factor AlgU. AlgU is required for the expression of amrZ, encoding a FleQ repressor. AmrZ itself has been shown to modulate c-di-GMP levels through the control of many genes encoding enzymes implicated in c-di-GMP turnover. This cyclic nucleotide regulates flagellar function and besides, the master regulator of the flagellar synthesis signaling pathway, FleQ, has been shown to bind c-di-GMP. Here we show that AdrA, a diguanylate cyclase regulated by AmrZ participates in this signaling pathway. Epistasis analysis has shown that AdrA acts upstream of SadB, linking SadB with environmental signaling. We also show that SadB binds c-di-GMP with higher affinity than FleQ and propose that c-di-GMP produced by AdrA modulates flagella synthesis through SadB.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas fluorescens/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Biogênese de Organelas , Pseudomonas fluorescens/citologia , Pseudomonas fluorescens/genética , Fator sigma/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo
15.
mBio ; 9(3)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844113

RESUMO

Hospital-acquired infection is a major cause of morbidity and mortality, and regimes to prevent infection are crucial in infection control. These include the decolonization of vulnerable patients with methicillin-resistant Staphylococcus aureus (MRSA) carriage using antiseptics, including chlorhexidine and octenidine. Concern has been raised, however, regarding the possible development of biocide resistance. In this study, we assembled a panel of S. aureus isolates, including isolates collected before the development of chlorhexidine and octenidine and isolates, from a major hospital trust in the United Kingdom during a period when the decolonization regimes were altered. We observed significant increases in the MIC and minimum bactericidal concentration (MBC) of chlorhexidine in isolates from periods of high usage of chlorhexidine. Isolates with increased MICs and MBCs of octenidine rapidly emerged after octenidine was introduced in the trust. There was no apparent cross-resistance between the two biocidal agents. A combination of variable-number tandem repeat (VNTR) analysis, PCR for qac genes, and whole-genome sequencing was used to type isolates and examine possible mechanisms of resistance. There was no expansion of a single strain associated with decreased biocide tolerance, and biocide susceptibility did not correlate with carriage of qac efflux pump genes. Mutations within the NorA or NorB efflux pumps, previously associated with chlorhexidine export, were identified, however, suggesting that this may be an important mechanism of biocide tolerance. We present evidence that isolates are evolving in the face of biocide challenge in patients and that changes in decolonization regimes are reflected in changes in susceptibility of isolates.IMPORTANCE Infection in hospitals remains a major cause of death and disease. One way in which we combat this is by decolonizing at-risk patients from carriage of bacteria which can cause disease such as MRSA. This is done with antiseptics, including chlorhexidine and octenidine. There is concern, however, that bacteria may be able to become resistant to these antiseptics. In this study, we looked at isolates of MRSA and found that there was a correlation between the use of antiseptics and increased resistance in the isolates. We also suggest that the mechanism by which these more tolerant isolates may become resistant to antiseptics is that of changing a transport pump that exports these agents. This information suggests that we need to study the impact of antiseptics on clinically important bacteria more closely.


Assuntos
Anti-Infecciosos Locais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorexidina/farmacologia , Farmacorresistência Bacteriana , Humanos , Iminas , Testes de Sensibilidade Microbiana , Filogenia , Piridinas/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação
16.
PLoS Genet ; 13(6): e1006839, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28658302

RESUMO

Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate.


Assuntos
Proteínas de Bactérias/genética , Gluconatos/metabolismo , Pseudomonas fluorescens/genética , Fatores de Transcrição/genética , Sítios de Ligação , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Gluconeogênese/genética , Glucose/metabolismo , Glioxilatos/metabolismo , Ligantes , Redes e Vias Metabólicas/genética , Pseudomonas fluorescens/metabolismo , Ácido Pirúvico/metabolismo
17.
PLoS Genet ; 12(5): e1006080, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27214040

RESUMO

Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Myxococcus xanthus/genética , Fósforo-Oxigênio Liases/genética , Esporos Bacterianos/genética , Proteínas de Bactérias/biossíntese , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Inanição
18.
PLoS Genet ; 12(2): e1005837, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26845436

RESUMO

Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Proteoma/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas/fisiologia , Ribossomos/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Modelos Biológicos , Movimento , Mutação/genética , Raízes de Plantas/microbiologia , Ligação Proteica , Pseudomonas/genética , Pseudomonas/patogenicidade , Infecções por Pseudomonas/microbiologia , Regulon/genética , Rizosfera , Sistemas do Segundo Mensageiro , Triticum/microbiologia , Regulação para Cima/genética , Virulência
19.
J Biol Chem ; 290(40): 24470-83, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26265469

RESUMO

The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Nucleotídeos/química , ATPases Translocadoras de Prótons/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , GMP Cíclico/química , Flagelos/metabolismo , Regulação da Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Transporte Proteico , ATPases Translocadoras de Prótons/genética , Pseudomonas aeruginosa/enzimologia , Piruvato Quinase/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA