Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527360

RESUMO

(In, Ga) alloy droplets are used to catalyse the growth of (In, Ga)As nanowires by molecular beam epitaxy on Si(111) substrates. The composition, morphology and optical properties of these nanowires can be tuned by the employed elemental fluxes. To incorporate more than 10% of In, a high In/(In+Ga) flux ratio above 0.7 is required. We report a maximum In content of almost 30% in bulk (In, Ga)As nanowires for an In/(In+Ga) flux ratio of 0.8. However, with increasing In/(In+Ga) flux ratio, the nanowire length and diameter are notably reduced. Using photoluminescence and cathodoluminescence spectroscopy on nanowires covered by a passivating (In, Al)As shell, two luminescence bands are observed. A significant segment of the nanowires shows homogeneous emission, with a wavelength corresponding to the In content in this segment, while the consumption of the catalyst droplet leads to a spectrally-shifted emission band at the top of the nanowires. The (In,Ga)As nanowires studied in this work provide a new approach for the integration of infrared emitters on Si platforms.

2.
Nanotechnology ; 34(46)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579739

RESUMO

We study the molecular beam epitaxy of AlN nanowires between 950 °C and 1215 °C, well above the usual growth temperatures, to identify optimal growth conditions. The nanowires are grown by self-assembly on TiN(111) films sputtered onto Al2O3. Above 1100 °C, the TiN film is seen to undergo grain growth and its surface exhibits {111} facets where AlN nucleation preferentially occurs. Modeling of the nanowire elongation rate measured at different temperatures shows that the Al adatom diffusion length maximizes at 1150 °C, which appears to be the optimum growth temperature. However, analysis of the nanowire luminescence shows a steep increase in the deep-level signal already above 1050 °C, associated with O incorporation from the Al2O3substrate. Comparison with AlN nanowires grown on Si, MgO and SiC substrates suggests that heavy doping of Si and O by interdiffusion from the TiN/substrate interface increases the nanowire internal quantum efficiency, presumably due to the formation of a SiNxor AlOxpassivation shell. The outdiffusion of Si and O would also cause the formation of the inversion domains observed in the nanowires. It follows that for optoelectronic and piezoelectric applications, optimal AlN nanowire ensembles should be prepared at 1150 °C on TiN/SiC substrates and will require anex situsurface passivation.

3.
Nanotechnology ; 34(37)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311438

RESUMO

The self-assembly of heteroepitaxial GaN nanowires using either molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) mostly results in wafer-scale ensembles with ultrahigh (>10µm-2) or ultralow (<1µm-2) densities, respectively. A simple means to tune the density of well-developed nanowire ensembles between these two extremes is generally lacking. Here, we examine the self-assembly of SiNxpatches on TiN(111) substrates which are eventually acting as seeds for the growth of GaN nanowires. We first found that if prepared by reactive sputtering, the TiN surface is characterized by {100} facets for which the GaN incubation time is extremely long. Fast GaN nucleation is only obtained after deposition of a sub-monolayer of SiNxatoms prior to the GaN growth. By varying the amount of pre-deposited SiNx, the GaN nanowire density could be tuned by three orders of magnitude with excellent uniformity over the entire wafer, bridging the density regimes conventionally attainable by direct self-assembly with MBE or MOVPE. The analysis of the nanowire morphology agrees with a nucleation of the GaN nanowires on nanometric SiNxpatches. The photoluminescence analysis of single freestanding GaN nanowires reveals a band edge luminescence dominated by excitonic transitions that are broad and blue shifted compared to bulk GaN, an effect that is related to the small nanowire diameter and to the presence of a thick native oxide. The approach developed here can be principally used for tuning the density of most III-V semiconductors nucleus grown on inert surfaces like 2D materials.


Assuntos
Gálio , Nanofios , Nanofios/química , Estanho , Gálio/química , Luminescência , Óxidos
4.
Nanotechnology ; 30(11): 114001, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30681980

RESUMO

We investigate the occurrence of interfacial reactions during the self-assembled formation of GaN nanowires on Ti/Al2O3(0001) substrates in plasma-assisted molecular beam epitaxy. The conditions typical for the synthesis of ensembles of long nanowires (>1 µm) are found to promote several chemical reactions. In particular, the high substrate temperature leads to the interdiffusion of Al and O at the Ti/Al2O3 interface resulting in the formation of Al x Ti y O1-x-y and Ti x O1-x compounds. Furthermore, O is found to incorporate into the nanowires degrading their luminescence by heavy n-type doping. At the same time, impinging Ga and N species react with the substrate giving rise to the simultaneous formation of single-crystalline TiN and Ga x Ti y O1-x-y compounds. The latter compounds tend to form hillocks at the substrate surface, on top of which nanowires elongate with large tilt angles with respect to the substrate normal. We develop here a specific process in order to mitigate the detrimental effects of these interfacial reactions, while maintaining the low areal density and absence of coalescence which is the strong asset of growing nanowires on Ti/Al2O3. We find that the combination of a thick Ti film with an intentional low temperature nitridation step preceding nanowire growth and a limited growth temperature results in ensembles of uncoalesced and well-oriented nanowires with luminescence properties comparable to those of standard GaN nanowires prepared on Si. All these properties, together with the inherent benefits of integrating semiconductors on metals, make the present materials combination a promising platform for the further development of group-III nitride nanowire-based devices.

5.
Nanotechnology ; 27(32): 325603, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27364086

RESUMO

In this work, we report on the spontaneous formation of ordered arrays of nanometer-sized Bi-rich structures due to lateral composition modulations in Ga(As,Bi)/GaAs quantum wells grown by molecular beam epitaxy. The overall microstructure and chemical distribution is investigated using transmission electron microscopy. The information is complemented by synchrotron x-ray grazing incidence diffraction, which provides insight into the in-plane arrangement. Due to the vertical inheritance of the lateral modulation, the Bi-rich nanostructures eventually shape into a three-dimensional assembly. Whereas the Bi-rich nanostructures are created via two-dimensional phase separation at the growing surface, our results suggest that the process is assisted by Bi segregation which is demonstrated to be strong and more complex than expected, implying both lateral and vertical (surface segregation) mass transport. As demonstrated here, the inherent thermodynamic miscibility gap of Ga(As,Bi) alloys can be exploited to create highly uniform Bi-rich units embedded in a quantum confinement structure.

6.
J Chem Phys ; 144(21): 214704, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276963

RESUMO

Zn1-xMgxO films with x = 0.04-0.50 grown on MgO (100) substrates by molecular beam epitaxy retain the rocksalt (rs) crystal structure and grow epitaxially for x ≥ 0.17. In addition, the rs-ZnO epilayer is observed to be stable up to a thickness of 5 nm and also in a ZnO/MgO superlattice sample. However, a portion of the superlattice has transformed to wurtzite (wz)-structure islands in a self-accommodated manner during growth. The transformation is a combination of a Bain distortion, an in-plane rotation of 14.5°, and a Peierls distortion, resulting in an orientation relationship of (100)rs//(101̄0)wz and 〈011〉rs ∼//〈1̄21̄3〉wz. In such a manner, the volume expansion is only necessary along the growth direction and the in-plane strains can be minimized. A negative pressure generated during the transformation of ZnO stabilizes the MgO into a wurtzite structure.

7.
Nanotechnology ; 27(6): 065705, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26759358

RESUMO

We report on the formation of polarity inversion in ordered (In,Ga)N/GaN nanocolumns grown on a Ti-masked GaN-buffered sapphire substrate by plasma assisted molecular beam epitaxy. High-resolution transmission electron microscopy and electron energy-loss spectroscopy reveal a stacking fault-like planar defect at the homoepitaxial GaN interface due to Ti incorporation, triggering the generation of N-polar domains in Ga-polar nanocolumns. Density functional theory calculations are applied to clarify the atomic configurations of a Ti monolayer occupation on the GaN (0002) plane and to prove the inversion effect. The polarity inversion leads to an enhanced indium incorporation in the subsequent (In,Ga)N segment of the nanocolumn. This study provides a deeper understanding of the effects of Ti mask in the well-controlled selective area growth of (In,Ga)N/GaN nanocolumns.

8.
Nanotechnology ; 26(8): 085605, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25656795

RESUMO

AlN layers with thicknesses between 2 and 14 nm were grown on Si(111) substrates by molecular beam epitaxy. The effect of the AlN layer thickness on the morphology and nucleation time of spontaneously formed GaN nanowires (NWs) was investigated by scanning electron microscopy and line-of-sight quadrupole mass spectrometry, respectively. We observed that the alignment of the NWs grown on these layers improves with increasing layer thickness while their nucleation time decreases. Our results show that 4 nm is the smallest thickness of the AlN layer that allows the growth of well-aligned NWs with short nucleation time. Such an AlN buffer layer was successfully employed, together with a patterned SiOx mask, for the selective-area growth (SAG) of vertical GaN NWs. In addition, we fabricated light-emitting diodes (LEDs) from NW ensembles that were grown by means of self-organization phenomena on bare and on AlN-buffered Si substrates. A careful characterization of the optoelectronic properties of the two devices showed that the performance of NW-LEDs on bare and AlN-buffered Si is similar. Electrical conduction across the AlN buffer is facilitated by a high number of grain boundaries that were revealed by transmission electron microscopy. These results demonstrate that grainy AlN buffer layers on Si are compatible both with the SAG of GaN NWs and LED operation. Therefore, this study is a first step towards the fabrication of LEDs on Si substrates based on homogeneous NW ensembles.

9.
Nanotechnology ; 25(48): 485602, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25391271

RESUMO

InAs segments were grown on top of GaAs islands, initially created by droplet epitaxy on silicon substrate. We systematically explored the growth-parameter space for the deposition of InAs, identifying the conditions for the selective growth on GaAs and for purely axial growth. The axial InAs segments were formed with their sidewalls rotated by 30° compared to the GaAs base islands underneath. Synchrotron X-ray diffraction experiments revealed that the InAs segments are grown relaxed on top of GaAs, with a predominantly zincblende crystal structure and stacking faults.

10.
Nano Lett ; 13(7): 3205-12, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23795596

RESUMO

Vertically aligned GaN nanorod arrays with nonpolar InGaN/GaN multi quantum wells (MQW) were grown by MOVPE on c-plane GaN-on-sapphire templates. The chemical and structural properties of single nanorods are optically investigated with a spatial resolution beyond the diffraction limit using tip-enhanced Raman spectroscopy (TERS). This enables the local mapping of variations in the chemical composition, charge distribution, and strain in the MQW region of the nanorods. Nanoscale fluctuations of the In content in the InGaN layer of a few percent can be identified and visualized with a lateral resolution below 35 nm. We obtain evidence for the presence of indium clustering and the formation of cubic inclusions in the wurtzite matrix near the QW layers. These results are directly confirmed by high-resolution TEM images, revealing the presence of stacking faults and different polymorphs close to the surface near the MQW region. The combination of TERS and HRTEM demonstrates the potential of this nanoscale near-field imaging technique, establishing TERS as a very potent, comprehensive, and nondestructive tool for the characterization and optimization of technologically relevant semiconductor nanostructures.

11.
Nanotechnology ; 24(17): 175303, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23558410

RESUMO

Selective area growth of In(Ga)N/GaN nanocolumns was performed on GaN-buffered Si(111) substrates by plasma-assisted molecular beam epitaxy. Undoped and Si-doped GaN buffer layers were first grown on Si(111) substrates, showing photoluminescence excitonic emission without traces of other low energy contributions, in particular, the yellow band. The GaN buffer surface roughness (between 10 and 14 nm, the rms value in a 10 × 10 µm(2) area) was low enough to allow the fabrication of a thin (7 nm thick) well defined Ti nanohole mask, for the selective area growth. Ordered In(Ga)N/GaN nanocolumns emitting from the ultraviolet (3.2 eV) to the infrared (0.78 eV) were obtained. The morphology and the emission efficiency of the In(Ga)N/GaN nanocolumns emitting at a given wavelength could be substantially improved by tuning the In/Ga and total III/N ratios. An estimated internal quantum efficiency of 36% was derived from photoluminescence data for green emitting nanocolumns.

12.
Nanotechnology ; 23(48): 485701, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23123435

RESUMO

We demonstrate the potential of low-loss electron energy-loss spectroscopy in transmission electron microscopy as a quick and straightforward method to determine the local indium compositions in (In,Ga)N/GaN nanowires. The (In,Ga)N/GaN nanowire heterostructures are grown by plasma assisted molecular beam epitaxy on Si(111) substrates in a self-assembled way, and on patterned GaN templates in an ordered way. A wide range of indium contents is realized by varying the substrate temperatures. The plasmon peak in low-loss electron energy-loss spectroscopy exhibits a linear relation with respect to indium concentration in (In,Ga)N nanowires, allowing for a direct compositional analysis. The high spatial resolution of this method in combination with structural information from transmission electron microscopy will contribute to a basic understanding of the lattice pulling effect during (In,Ga)N/GaN nanowire growth.

13.
Nanotechnology ; 23(46): 465301, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23092897

RESUMO

Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased µ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect.

14.
Nanotechnology ; 23(30): 305703, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22751267

RESUMO

We study the mechanism of lattice parameter accommodation and the structure of GaAs nanowires (NWs) grown on Si(111) substrates using the Ga-assisted growth mode in molecular beam epitaxy. These nanowires grow preferentially in the zincblende structure, but contain inclusions of wurtzite at the base. By means of grazing incidence x-ray diffraction and high-resolution transmission electron microscopy of the NW-substrate interface, we show that the lattice mismatch between the NW and the substrate is released immediately after the beginning of NW growth through the inclusion of misfit dislocations, and no pseudomorphic growth is obtained for NW diameters down to 10 nm. NWs with a diameter above 100 nm exhibit a rough interface towards the substrate, preventing complete plastic relaxation. Consequently, these NWs exhibit a residual compressive strain at their bottom. In contrast, NWs with a diameter of 50 nm and below are completely relaxed because the interface is smooth.

15.
Nanotechnology ; 22(41): 415701, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21914935

RESUMO

Channeling-enhanced electron energy-loss spectroscopy is applied to determine the polarity of ultra-small nitride semiconductor nanocolumns in transmission electron microscopy. The technique demonstrates some practical advantages in the nanostructure analysis, especially for feature sizes of less than 50 nm. We have studied GaN and (Al, Ga)N nanocolumns grown in a self-assembled way by molecular beam epitaxy directly on bare Si(111) substrates and on AlN buffer layers, respectively. The GaN nanocolumns on Si show an N polarity, while the (Al, Ga)N nanocolumns on an AlN buffer exhibit a Ga polarity. The different polarities of nanocolumns grown in a similar procedure are interpreted in terms of the specific interface bonding configurations. Our investigation contributes to the understanding of polarity control in III-nitride nanocolumn growth.

16.
Nanotechnology ; 22(36): 365703, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21836335

RESUMO

Vertical stacks of (In, Ga)N insertions in GaN nanowires are grown by molecular beam epitaxy. The chemical composition and strain within the structure are probed by a combination of high-resolution x-ray diffraction, transmission electron microscopy, and geometrical phase analysis. The (In, Ga)N insertions are coherently strained. Finite-element simulations strongly support an ineffective [corrected] strain relaxation despite [corrected] the nanowire geometry, leading to high-quality (In, Ga)N/GaN nanowire heterostructures. An intense green photoluminescence emission is observed and attributed to an inter-well transition between the stacked (In, Ga)N insertions.

17.
Nanotechnology ; 22(29): 295714, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21693799

RESUMO

We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from ± (0.015)% to ± (0.03)%. This micro-strain contributes to the linewidth observed in low-temperature photoluminescence spectra.

18.
Nanotechnology ; 21(30): 305201, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20603534

RESUMO

We demonstrate the fabrication of N-face GaN nanorods by metal organic vapour phase epitaxy (MOVPE), using continuous-flux conditions. This is in contrast to other approaches reported so far, which have been based on growth modes far off the conventional growth regimes. For position control of nanorods an SiO(2) masking layer with a dense hole pattern on a c-plane sapphire substrate was used. Nanorods with InGaN/GaN heterostructures have been grown catalyst-free. High growth rates up to 25 microm h(-1) were observed and a well-adjusted carrier gas mixture between hydrogen and nitrogen enabled homogeneous nanorod diameters down to 220 nm with aspect ratios of approximately 8:1. The structural quality and defect progression within nanorods were determined by transmission electron microscopy (TEM). Different emission energies for InGaN quantum wells (QWs) could be assigned to different side facets by room temperature cathodoluminescence (CL) measurements.

19.
Nanotechnology ; 21(24): 245705, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20484796

RESUMO

Strain relaxation mechanisms occurring during self-induced growth of nitride nanowires are investigated by in situ reflection high-energy electron diffraction and ex situ high-resolution transmission electron microscopy. Epitaxial GaN nanowires nucleate on an AlN buffer layer under highly nitrogen-rich conditions via the initial formation of coherently strained three-dimensional islands according to the Volmer-Weber growth mechanism. The epitaxial strain relief in these islands occurs by two different processes. Initially, strain is elastically relieved via several shape transitions. Subsequently, plastic relaxation takes place through the formation of a misfit dislocation at the GaN/AlN interface. At the same time, a final shape transition to fully relaxed nanowires occurs.

20.
Nano Lett ; 9(11): 3743-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19751066

RESUMO

Controlled nanoscale self-assembly of magnetic entities in semiconductors opens novel perspectives for the tailoring of magnetic semiconductor films and nanostructures with room temperature functionality. We report that a strongly directional self-assembly in growth direction in Mn-alloyed Ge is due to a stacking of individual Ge(1-x)Mn(x) clusters. The clusters represent the relevant entities for the magnetization of the material. They are formed of a core-shell structure displaying a Mn concentration gradient. While the magnetic moments seem to be carried by the shells of the clusters, their core is magnetically inactive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA