Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 89(5): 952-966, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33550655

RESUMO

OBJECTIVE: Apolipoprotein E (ApoE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, with the ε4 allele increasing risk in a dose-dependent fashion. In addition to ApoE4 playing a crucial role in amyloid-ß deposition, recent evidence suggests that it also plays an important role in tau pathology and tau-mediated neurodegeneration. It is not known, however, whether therapeutic reduction of ApoE4 would exert protective effects on tau-mediated neurodegeneration. METHODS: Herein, we used antisense oligonucleotides (ASOs) against human APOE to reduce ApoE4 levels in the P301S/ApoE4 mouse model of tauopathy. We treated P301S/ApoE4 mice with ApoE or control ASOs via intracerebroventricular injection at 6 and 7.5 months of age and performed brain pathological assessments at 9 months of age. RESULTS: Our results indicate that treatment with ApoE ASOs reduced ApoE4 protein levels by ~50%, significantly protected against tau pathology and associated neurodegeneration, decreased neuroinflammation, and preserved synaptic density. These data were also corroborated by a significant reduction in levels of neurofilament light chain (NfL) protein in plasma of ASO-treated mice. INTERPRETATION: We conclude that reducing ApoE4 levels should be explored further as a therapeutic approach for APOE4 carriers with tauopathy including Alzheimer's disease. ANN NEUROL 2021;89:952-966.


Assuntos
Apolipoproteína E4/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Oligonucleotídeos Antissenso/uso terapêutico , Tauopatias/complicações , Tauopatias/tratamento farmacológico , Animais , Apolipoproteína E4/sangue , Apolipoproteína E4/genética , Colesterol/metabolismo , Giro Denteado/patologia , Encefalite/prevenção & controle , Técnicas de Introdução de Genes , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neurofilamentos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Sinapses/efeitos dos fármacos , Sinapses/patologia , Proteínas tau/metabolismo
2.
Mol Neurodegener ; 14(1): 37, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623648

RESUMO

BACKGROUND: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer disease (AD). ApoE is produced by both astrocytes and microglia in the brain, whereas hepatocytes produce the majority of apoE found in the periphery. Studies using APOE knock-in and transgenic mice have demonstrated a strong isoform-dependent effect of apoE on the accumulation of amyloid-ß (Aß) deposition in the brain in the form of both Aß-containing amyloid plaques and cerebral amyloid angiopathy. However, the specific contributions of different apoE pools to AD pathogenesis remain unknown. METHODS: We have begun to address these questions by generating new lines of APOE knock-in (APOE-KI) mice (ε2/ε2, ε3/ε3, and ε4/ε4) where the exons in the coding region of APOE are flanked by loxP sites, allowing for cell type-specific manipulation of gene expression. We assessed these mice both alone and after crossing them with mice with amyloid deposition in the brain. Using biochemical and histological methods. We also investigated how removal of APOE expression from hepatocytes affected cerebral amyloid deposition. RESULTS: As in other APOE knock-in mice, apoE protein was present predominantly in astrocytes in the brain under basal conditions and was also detected in reactive microglia surrounding amyloid plaques. Primary cultured astrocytes and microglia from the APOE-KI mice secreted apoE in lipoprotein particles of distinct size distribution upon native gel analysis with microglial particles being substantially smaller than the HDL-like particles secreted by astrocytes. Crossing of APP/PS1 transgenic mice to the different APOE-KI mice recapitulated the previously described isoform-specific effect (ε4 > ε3) on amyloid plaque and Aß accumulation. Deletion of APOE in hepatocytes did not alter brain apoE levels but did lead to a marked decrease in plasma apoE levels and changes in plasma lipid profile. Despite these changes in peripheral apoE and on plasma lipids, cerebral accumulation of amyloid plaques in APP/PS1 mice was not affected. CONCLUSIONS: Altogether, these new knock-in strains offer a novel and dynamic tool to study the role of APOE in AD pathogenesis in a spatially and temporally controlled manner.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA