Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 43, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200582

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS: Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS: SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS: This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Sulfonas , Animais , Humanos , Camundongos , Angiogênese , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Células Endoteliais , Neoplasias Hepáticas/genética , Metanol , Neovascularização Patológica , Fosfofrutoquinase-2 , Receptores de Esfingosina-1-Fosfato
2.
Pathology ; 56(3): 391-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38071157

RESUMO

We have recently determined dimethylguanidino valeric acid (DMGV) to be a novel biomarker of liver injury in non-alcoholic fatty liver disease (NAFLD) and an independent predictor of incident diabetes over a decade in advance. DMGV consists of two stereo-isomers, asymmetric dimethylguanidino valeric acid (ADGV) and symmetric dimethylguanidino valeric acid (SDGV). Here we report, for the first time, the upper limits of normal of both isomers in humans at the accepted 5.56% liver fat threshold for NAFLD, determined using in vivo magnetic resonance spectroscopy. We performed independent and blinded comparative analyses of ADGV and SDGV levels using two different liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods in (A) our laboratory, and (B) the New South Wales Chemical Pathology state laboratory, using unique columns, LC-MS/MS equipment, extraction protocols and normalisation approaches. Despite these differences, each laboratory reported consistent absolute concentrations across a range of liver fat percentages. We next determined the diagnostic performance of SDGV compared to ADGV in a cohort of 268 individuals with liver fat measurements. In derivation-validation analyses we determined rule-in/rule-out thresholds and the concentration of SDGV that provides optimal performance across sensitivity and specificity for the identification of NAFLD. In conclusion, we have herein determined for the first time the true human plasma reference range of both isoforms of an emerging novel biomarker of NAFLD, at the accepted upper normal threshold of liver fat. We have also identified that SDGV is the isoform with the best diagnostic performance and determined the optimal cut-point for its detection of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácidos Pentanoicos , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/patologia , Biomarcadores
3.
Oncogenesis ; 11(1): 67, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333295

RESUMO

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, the third leading cause of cancer-associated death worldwide. With the increasing prevalence of metabolic conditions, non-alcoholic fatty liver disease (NAFLD) is emerging as the fastest-growing HCC risk factor, and it imposes an additional layer of difficulty in HCC management. Dysregulated hepatic lipids are generally believed to constitute a deleterious environment cultivating the development of NAFLD-associated HCC. However, exactly which lipids or lipid regulators drive this process remains elusive. We report herein that sphingosine kinase 2 (SphK2), a key sphingolipid metabolic enzyme, plays a critical role in NAFLD-associated HCC. Ablation of Sphk2 suppressed HCC development in NAFLD livers via inhibition of hepatocyte proliferation both in vivo and in vitro. Mechanistically, SphK2 deficiency led to downregulation of ceramide transfer protein (CERT) that, in turn, decreased the ratio of pro-cancer sphingomyelin (SM) to anti-cancer ceramide. Overexpression of CERT restored hepatocyte proliferation, colony growth and cell cycle progression. In conclusion, the current study demonstrates that SphK2 is an essential lipid regulator in NAFLD-associated HCC, providing experimental evidence to support clinical trials of SphK2 inhibitors as systemic therapies against HCC.

4.
Wound Repair Regen ; 30(5): 573-584, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36638156

RESUMO

Wound cleansing agents are routine in wound care and preoperative preparation. Antiseptic activity intends to prevent contaminating microbes from establishing an infection while also raising concerns of cytotoxicity and delayed wound healing. We evaluated the cytotoxicity of five clinically used wound cleaning agents (saline, povidone iodine, Dove® and Dial® soaps, and chlorhexidine gluconate [CHG]) using both an ex vivo and in vivo human skin xenograft mouse model, in contrast to classical in vitro models that lack the structural and compositional heterogeneity of human skin. We further established an ex vivo wound contamination model inoculated with ~100 cells of Pseudomonas aeruginosa or Staphylococcus aureus to evaluate antimicrobial efficacy. Scanning electron microscopy and confocal microscopy were used to evaluate phenotypic and spatial characteristics of bacterial cells in wound tissue. CHG significantly reduced metabolic activity of the skin explants, while all treatments except saline affected local cellular viability. CHG cytotoxicity persisted and progressed over 14 days, impairing wound healing in vivo. Within the contamination model, CHG treatment resulted in a significant reduction of P. aeruginosa wound surface counts at 24 h post-treatment. However, this effect was transient and serial application of CHG had no effect on both P. aeruginosa or S. aureus microbial growth. Microscopy revealed that viable cells of P. aeruginosa reside deep within wound tissue post-CHG application, likely serving as a reservoir to re-populate the tissue to a high bioburden. We reveal concerning cytotoxicity and limited antimicrobial activity of CHG in human skin using clinically relevant models, with the ability to resolve spatial localization and temporal dynamics of tissue viability and microbial growth.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Humanos , Animais , Camundongos , Staphylococcus aureus , Infecção da Ferida Cirúrgica/prevenção & controle , Cicatrização , Clorexidina/farmacologia , Clorexidina/análise , Anti-Infecciosos Locais/farmacologia , Povidona-Iodo/análise , Pele/química
5.
Atheroscler Plus ; 48: 12-19, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36644562

RESUMO

Background and aims: Preeclampsia (PE) is associated with life-long increased risk of cardiovascular disease. One of the main protective functions of high-density lipoprotein (HDL) is its role in reverse cholesterol transport. HDL-mediated cholesterol efflux capacity (CEC) is decreased during pregnancy in women with PE. Whether this persists postpartum is unknown. Methods: Basal and transporter-specific CEC were determined 6 months postpartum in women who had a normotensive (n = 44) or a PE (n = 42) pregnancy. CEC was also measured in 23 normotensive and 20 PE women for whom samples were collected 24 months postpartum. Basal, ATP-binding cassette transporter-A1 (ABCA1)- and -G1 (ABCG1)-specific CEC were primarily determined using Chinese hamster ovary cells stably expressing human ABCA1 or ABCG1, and were also assessed using a J774 mouse macrophage cell line. Results: ABCA1-specific CEC was significantly lower in women who had PE 6 months postpartum (0.57 ± 0.1 vs 0.53 ± 0.08; p < 0.05), whilst basal and ABCG1-specific efflux were not significantly different. cAMP-specific CEC in J774 cells was also lower 6 months after PE (0.85 ± 0.21 vs 0.75 ± 0.25, p < 0.05). Although apoA-I, apoE, plasminogen and PON-1 levels were not significantly different in women who had PE compared with controls, ABCA1 efflux did correlate with apoA-l, HDL-C and apoE levels after a normal, and with apoA-l and HDL-C levels after a PE pregnancy. ABCA1-specific efflux decreased in all women between 6 and 24 months postpartum, by 11 ± 1.6% in women who had a normotensive pregnancy and 9 ± 1.3% in women who had PE. After adjustment for apoA-I levels, there was no significant difference in ABCA1-specific efflux between the groups at 6 months postpartum and in normotensive women over time, but remained significantly different between 6 and 24 months in women who had PE. Conclusions: ABCA1-mediated CEC is impaired 6 months postpartum after a PE pregnancy and decreases thereafter in both normotensive and PE pregnancies. ABCA1-mediated efflux is dynamic after pregnancy but is unlikely to explain the long-term increased CVD risk in women with PE.

6.
Science ; 374(6575): eabl5450, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941394

RESUMO

Tissue-specific cues are critical for homeostasis at mucosal barriers. Here, we report that the clotting factor fibrin is a critical regulator of neutrophil function at the oral mucosal barrier. We demonstrate that commensal microbiota trigger extravascular fibrin deposition in the oral mucosa. Fibrin engages neutrophils through the αMß2 integrin receptor and activates effector functions, including the production of reactive oxygen species and neutrophil extracellular trap formation. These immune-protective neutrophil functions become tissue damaging in the context of impaired plasmin-mediated fibrinolysis in mice and humans. Concordantly, genetic polymorphisms in PLG, encoding plasminogen, are associated with common forms of periodontal disease. Thus, fibrin is a critical regulator of neutrophil effector function, and fibrin-neutrophil engagement may be a pathogenic instigator for a prevalent mucosal disease.


Assuntos
Fibrina/metabolismo , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Periodontite/genética , Plasminogênio/genética , Perda do Osso Alveolar , Animais , Armadilhas Extracelulares/metabolismo , Feminino , Fibrina/química , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Microbioma Gastrointestinal/fisiologia , Gengiva/imunologia , Humanos , Imunidade nas Mucosas , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos , Mucosa Bucal/microbiologia , Periodontite/imunologia , Plasminogênio/deficiência , Plasminogênio/metabolismo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo
7.
Front Oncol ; 11: 738078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604081

RESUMO

Prostate cancer is the second most prevalent malignancy worldwide. In the early stages, the development of prostate cancer is dependent on androgens. Over time with androgen deprivation therapy, 20% of prostate cancers progress to a castration-resistant form. Novel treatments for prostate cancers are still urgently needed. Erianin is a plant-derived bibenzyl compound. We report herein that erianin exhibits anti-tumor effects in androgen-sensitive and castration-resistant prostate cancer cells through different mechanisms. Erianin induces endoplasmic reticulum stress-associated apoptosis in androgen-sensitive prostate cancer cells. It also triggers pro-survival autophagic responses, as inhibition of autophagy predisposes to apoptosis. In contrast, erianin fails to induce apoptosis in castration-resistant prostate cancer cells. Instead, it results in cell cycle arrest at the M phase. Mechanistically, C16 ceramide dictates differential responses of androgen-sensitive and castration-resistant prostate cancer cells to erianin. Erianin elevates C16 ceramide level in androgen-sensitive but not castration-resistant prostate cancer cells. Overexpression of ceramide synthase 5 that specifically produces C16 ceramide enables erianin to induce apoptosis in castration-resistant prostate cancer cells. Our study provides both experimental evidence and mechanistic data showing that erianin is a potential treatment option for prostate cancers.

8.
Sci Rep ; 10(1): 19138, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154487

RESUMO

The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.


Assuntos
Neoplasias Ósseas/genética , Osso e Ossos/patologia , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Metaloproteinase 14 da Matriz/genética , Osteossarcoma/genética , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Osso e Ossos/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Osteossarcoma/metabolismo , Osteossarcoma/secundário
9.
Proc Natl Acad Sci U S A ; 117(39): 24434-24442, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32917816

RESUMO

Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Homeostase , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esfingolipídeos/metabolismo
10.
J Neurochem ; 153(2): 173-188, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31742704

RESUMO

Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through a family of five G protein-coupled receptors, S1PR1-S1PR5, to regulate cell physiology. The multiple sclerosis drug Fingolimod (FTY720) is a potent S1P receptor agonist that causes peripheral lymphopenia. Recent research has demonstrated direct neuroprotective properties of FTY720 in several neurodegenerative paradigms; however, neuroprotective properties of the native ligand S1P have not been established. We aimed to establish the significance of neurotrophic factor up-regulation by S1P for neuroprotection, comparing S1P with FTY720. S1P induced brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), platelet-derived growth factor B (PDGFB), and heparin-binding EGF-like growth factor (HBEGF) gene expression in primary human and murine astrocytes, but not in neurons, and to a much greater extent than FTY720. Accordingly, S1P but not FTY720 protected cultured neurons against excitotoxic cell death in a primary murine neuron-glia coculture model, and a neutralizing antibody to LIF blocked this S1P-mediated neuroprotection. Antagonists of S1PR1 and S1PR2 both inhibited S1P-mediated neurotrophic gene induction in human astrocytes, indicating that simultaneous activation of both receptors is required. S1PR2 signaling was transduced through Gα13 and the small GTPase Rho, and was necessary for the up-regulation and activation of the transcription factors FOS and JUN, which regulate LIF, BDNF, and HBEGF transcription. In summary, we show that S1P protects hippocampal neurons against excitotoxic cell death through up-regulation of neurotrophic gene expression, particularly LIF, in astrocytes. This up-regulation requires both S1PR1 and S1PR2 signaling. FTY720 does not activate S1PR2, explaining its relative inefficacy compared to S1P.


Assuntos
Astrócitos/metabolismo , Cloridrato de Fingolimode/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Fatores de Crescimento Neural/biossíntese , Neurônios/metabolismo , Esfingosina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Esfingosina/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia
11.
Structure ; 28(1): 63-74.e4, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31785925

RESUMO

Natural product biosynthetic pathways are replete with enzymes repurposed for new catalytic functions. In some modular polyketide synthase (PKS) pathways, a GCN5-related N-acetyltransferase (GNAT)-like enzyme with an additional decarboxylation function initiates biosynthesis. Here, we probe two PKS GNAT-like domains for the dual activities of S-acyl transfer from coenzyme A (CoA) to an acyl carrier protein (ACP) and decarboxylation. The GphF and CurA GNAT-like domains selectively decarboxylate substrates that yield the anticipated pathway starter units. The GphF enzyme lacks detectable acyl transfer activity, and a crystal structure with an isobutyryl-CoA product analog reveals a partially occluded acyltransfer acceptor site. Further analysis indicates that the CurA GNAT-like domain also catalyzes only decarboxylation, and the initial acyl transfer is catalyzed by an unidentified enzyme. Thus, PKS GNAT-like domains are re-classified as GNAT-like decarboxylases. Two other decarboxylases, malonyl-CoA decarboxylase and EryM, reside on distant nodes of the superfamily, illustrating the adaptability of the GNAT fold.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Policetídeos/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína
12.
Blood ; 134(3): 291-303, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31101623

RESUMO

Efficient migration of macrophages to sites of inflammation requires cell surface-bound plasmin(ogen). Here, we investigated the mechanisms underlying the deficits of plasmin(ogen)-mediated macrophage migration in 2 models: murine thioglycollate-induced peritonitis and in vitro macrophage migration. As previously reported, macrophage migration into the peritoneal cavity of mice in response to thioglycollate was significantly impaired in the absence of plasminogen. Fibrin(ogen) deposition was noted in the peritoneal cavity in response to thioglycollate, with a significant increase in fibrin(ogen) in the plasminogen-deficient mice. Interestingly, macrophage migration was restored in plasminogen-deficient mice by simultaneous imposition of fibrinogen deficiency. Consistent with this in vivo finding, chemotactic migration of cultured macrophages through a fibrin matrix did not occur in the absence of plasminogen. The macrophage requirement for plasmin-mediated fibrinolysis, both in vivo and in vitro, was negated by deletion of the major myeloid integrin αMß2-binding motif on the γ chain of fibrin(ogen). The study identifies a critical role of fibrinolysis in macrophage migration, presumably through the alleviation of migratory constraints imposed by the interaction of leukocytes with fibrin(ogen) through the integrin αMß2 receptor.


Assuntos
Quimiotaxia de Leucócito , Fibrinolisina/metabolismo , Fibrinólise , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrinogênio/genética , Fibrinogênio/metabolismo , Imunofluorescência , Humanos , Imunofenotipagem , Inflamação/patologia , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Plasminogênio/deficiência , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células RAW 264.7
13.
J Alzheimers Dis ; 63(2): 503-514, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29660940

RESUMO

The greatest risk factor for developing Alzheimer's disease (AD) is aging. The major genetic risk factor for AD is the ɛ4 allele of the APOE gene, encoding the brain's major lipid transport protein, apolipoprotein E (ApoE). The research community is yet to decipher why the ApoE4 variant pre-disposes to AD, and how aging causes the disease. Studies have shown deregulated levels of sphingolipids, including decreased levels of the neuroprotective signaling lipid sphingosine 1-phosphate (S1P), and increased ceramide content, in brain tissue and serum of people with pre-clinical or very early AD. In this study we investigated whether sphingolipid levels are affected as a function of age or APOE genotype, in the hippocampus of neurologically normal subjects over the age of 65. Lipids were quantified in 80 postmortem tissue samples using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sphingolipid levels were not significantly affected by the presence of one ɛ4 or ɛ2 allele. However, ceramide, sphingomyelin, and sulfatide content was very significantly correlated with age in the hippocampus of males. On the other hand, S1P, normalized to its non-phosphorylated precursor sphingosine, was inversely correlated with age in females. Our results therefore establish gender-specific differences in sphingolipid metabolism in the aging human brain. Ceramide is a pro-apoptotic lipid, and heavily implicated as a driver of insulin resistance in metabolic tissues. S1P is a neuroprotective lipid that supports glutamatergic neurotransmission. Increasing ceramide and decreasing S1P levels may contribute significantly to a pro-neurodegenerative phenotype in the aging brain.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , Doenças Neurodegenerativas/metabolismo , Caracteres Sexuais , Esfingolipídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Apolipoproteínas E/genética , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/genética
14.
Exp Neurol ; 300: 1-12, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055716

RESUMO

Connexin43 (Cx43) hemichannels in spinal cord astrocytes are implicated in the maintenance of neuropathic pain following peripheral nerve injury. Peptide5 is a Cx43 mimetic peptide that blocks hemichannels. In this study, we investigated the effects of spinal delivery of Peptide5 on mechanical pain hypersensitivity in two mouse models of neuropathic pain, peripheral nerve injury and chemotherapy-induced peripheral neuropathy (CIPN). We demonstrated that 10days following a chronic constriction injury (CCI) of the sciatic nerve, Cx43 expression, co-localised predominantly with astrocytes, was increased in the ipsilateral L3-L5 lumbar spinal cord. An intrathecal injection of Peptide5 into nerve-injured mice, on day 10 when pain was well-established, caused significant improvement in mechanical pain hypersensitivity 8h after injection. Peptide5 treatment resulted in significantly reduced Cx43, and microglial and astrocyte activity in the dorsal horn of the spinal cord, as compared to control saline-treated CCI mice. Further in vitro investigations on primary astrocyte cultures showed that 1h pre-treatment with Peptide5 significantly reduced adenosine triphosphate (ATP) release in response to extracellular calcium depletion. Since ATP is a known activator of the NOD-like receptor protein 3 (NLRP3) inflammasome complex, a key mediator of neuroinflammation, we examined the effects of Peptide5 treatment on NLRP3 inflammasome expression. We found that NLRP3, its adaptor apoptosis-associated spec-like protein (ASC) and caspase-1 protein were increased in the ipsilateral spinal cord of CCI mice and reduced to naïve levels following Peptide5 treatment. In the models of oxaliplatin- and paclitaxel-induced peripheral neuropathy, treatment with Peptide5 had no effect on mechanical pain hypersensitivity. Interestingly, in these CIPN models, although spinal Cx43 expression was significantly increased at day 13 following chemotherapy, NLRP3 expression was not altered. These results suggest that the analgesic effect of Peptide5 is specifically achieved by reducing NLRP3 expression. Together, our findings demonstrate that blocking Cx43 hemichannels with Peptide5 after nerve injury attenuates mechanical pain hypersensitivity by specifically targeting the NLRP3 inflammasome in the spinal cord.


Assuntos
Materiais Biomiméticos/administração & dosagem , Conexina 43/administração & dosagem , Hiperalgesia/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Fragmentos de Peptídeos/administração & dosagem , Animais , Hiperalgesia/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/metabolismo , Resultado do Tratamento
15.
ACS Chem Biol ; 12(12): 3039-3048, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29096064

RESUMO

Natural product biosynthetic pathways contain a plethora of enzymatic tools to carry out difficult biosynthetic transformations. Here, we discover an unusual mononuclear iron-dependent methyltransferase that acts in the initiation steps of apratoxin A biosynthesis (AprA MT1). Fe3+-replete AprA MT1 catalyzes one or two methyl transfer reactions on the substrate malonyl-ACP (acyl carrier protein), whereas Co2+, Fe2+, Mn2+, and Ni2+ support only a single methyl transfer. MT1 homologues exist within the "GNAT" (GCN5-related N-acetyltransferase) loading modules of several modular biosynthetic pathways with propionyl, isobutyryl, or pivaloyl starter units. GNAT domains are thought to catalyze decarboxylation of malonyl-CoA and acetyl transfer to a carrier protein. In AprA, the GNAT domain lacks both decarboxylation and acyl transfer activity. A crystal structure of the AprA MT1-GNAT di-domain with bound Mn2+, malonate, and the methyl donor S-adenosylmethionine (SAM) reveals that the malonyl substrate is a bidentate metal ligand, indicating that the metal acts as a Lewis acid to promote methylation of the malonyl α-carbon. The GNAT domain is truncated relative to functional homologues. These results afford an expanded understanding of MT1-GNAT structure and activity and permit the functional annotation of homologous GNAT loading modules both with and without methyltransferases, additionally revealing their rapid evolutionary adaptation in different biosynthetic contexts.


Assuntos
Depsipeptídeos/biossíntese , Ferro/metabolismo , Metiltransferases/metabolismo , Policetídeos/química , Depsipeptídeos/química , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metiltransferases/classificação , Metiltransferases/genética , Modelos Moleculares , Estrutura Molecular , Policetídeos/metabolismo , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA