RESUMO
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
RESUMO
Actin cytoskeleton is critical for neuronal shape and function. Drebrin and formins are key regulators of neuronal actin networks. Neuron-specific drebrin A is highly enriched in dendritic spines (postsynaptic terminals) of mature excitatory neurons. Decreased levels of drebrin in dendritic spines is a hallmark of Alzheimer's disease, epilepsy, and other complex disorders, which calls for better understanding of its regulatory functions. Drebrin A was previously shown to inhibit actin nucleation and bundling by the diaphanous formin-2 (mDia2) - an actin nucleator that is involved in the initiation of dendritic spines. Characterization of the molecular binding interface between mDia2 and drebrin is necessary to better understand the functional consequences of this interaction and its biological relevance. Prior work suggested a multi-pronged interface between mDia2 and drebrin, which involves both N-terminal and C-terminal regions of the drebrin molecule. Here we used mass spectrometry analysis, deletion mutagenesis, and an array of synthetic peptides of neuronal drebrin A to map its formin-binding interface. The mDia2-interacting interface on drebrin was narrowed down to three highly conserved 9-16 residue sequences that were used to identify some of the key residues involved in this interaction. Deletion of the C-terminal region of drebrin greatly reduces its binding to mDia2 and the extent of its inhibition of formin-driven actin assembly. Moreover, our experiments with formins from different subfamilies showed that drebrin is a specific rather than general inhibitor of these proteins. This work contributes to a molecular level understanding of the formin-drebrin interaction and will help to unravel its biological significance.
Assuntos
Actinas , Forminas , Neuropeptídeos , Actinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismoRESUMO
The enzyme enoyl-ACP reductase (also called FabI in bacteria) is an essential member of the fatty acid synthase II pathway in plants and bacteria. This enzyme is the target of the antibacterial drug triclosan and has been the subject of extensive studies for the past 20 years. Despite the large number of reports describing the biochemistry of this enzyme, there have been no studies that provided direct observation of the protein and its various ligands. Here we describe the use of native MS to characterize the protein-ligand interactions of FabI with its coenzymes NAD+ and NADH and with the inhibitor triclosan. Measurements of the gas-phase affinities of the enzyme for these ligands yielded values that are in close agreement with solution-phase affinity measurements. Additionally, FabI is a homotetramer and we were able to measure the affinity of each subunit for each coenzyme, which revealed that both coenzymes exhibit a positive homotropic allosteric effect. An allosteric effect was also observed in association with the inhibitor triclosan. These observations provide new insights into this well-studied enzyme and suggest that there may still be gaps in the existing mechanistic models that explain FabI inhibition.
Assuntos
Triclosan , Coenzimas , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Ácido Graxo Sintase Tipo II , Ligantes , Triclosan/química , Triclosan/metabolismo , Triclosan/farmacologiaRESUMO
Wall teichoic acid (WTA) polymers are covalently affixed to the Gram-positive bacterial cell wall and have important functions in cell elongation, cell morphology, biofilm formation, and ß-lactam antibiotic resistance. The first committed step in WTA biosynthesis is catalyzed by the TagA glycosyltransferase (also called TarA), a peripheral membrane protein that produces the conserved linkage unit, which joins WTA to the cell wall peptidoglycan. TagA contains a conserved GT26 core domain followed by a C-terminal polypeptide tail that is important for catalysis and membrane binding. Here, we report the crystal structure of the Thermoanaerobacter italicus TagA enzyme bound to UDP-N-acetyl-d-mannosamine, revealing the molecular basis of substrate binding. Native MS experiments support the model that only monomeric TagA is enzymatically active and that it is stabilized by membrane binding. Molecular dynamics simulations and enzyme activity measurements indicate that the C-terminal polypeptide tail facilitates catalysis by encapsulating the UDP-N-acetyl-d-mannosamine substrate, presenting three highly conserved arginine residues to the active site that are important for catalysis (R214, R221, and R224). From these data, we present a mechanistic model of catalysis that ascribes functions for these residues. This work could facilitate the development of new antimicrobial compounds that disrupt WTA biosynthesis in pathogenic bacteria.
Assuntos
Proteínas de Bactérias , Glicosiltransferases , Lipoproteínas , Staphylococcus aureus , Ácidos Teicoicos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Staphylococcus aureus/metabolismo , Especificidade por Substrato , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Difosfato de Uridina/metabolismoRESUMO
The combined use of electrospray ionization run in so-called "native mode" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies. We include an overview of strategies to navigate this type of analysis, provide example data sets, and highlight software for the hypothesis-driven interrogation of fragment ions for localization of PTMs, metals, and cofactors on native proteoforms. Throughout we have emphasized the key features (deconvolution, search mode, validation, other) that the reader can consider when deciding upon their specific experimental and data processing design using both open-access and commercial software.
RESUMO
A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A-I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodent apoA-I genes, it was discovered that the naked mole-rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA-I with cysteine at residues 173 (apoA-I Milano) or at 151 (apoA-I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA-I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA-I has been found with a cysteine in its sequence. In addition, the encoded naked mole-rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole-rat apoA-I having an unexpected neutral pI value, whereas other mammalian apoA-I have negative pI values. To verify these sequence differences and to determine if the N-terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA-I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.
Assuntos
Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteína A-I/química , Cromatografia Líquida , Cisteína/metabolismo , Bases de Dados de Proteínas , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Ratos , Especificidade da EspécieRESUMO
The marine sponge Aka coralliphaga is a rich source of biologically active and structurally interesting meroterpenoids. Inspired by these natural products, we have used biosynthetic speculation to devise biomimetic syntheses of siphonodictyal B, liphagal and corallidictyals A-D from sclareolide. This work resulted in the development of new cascade reactions in the synthesis of liphagal, the reassignment of the structure of siphonodictyal B, and the realisation that corallidictyals A and B are possibly isolation artefacts.