Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823389

RESUMO

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Assuntos
Neoplasias , Nucleotídeos de Purina , Purinas , Animais , Camundongos , Purinas/metabolismo , Purinas/biossíntese , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotídeos de Purina/metabolismo , Humanos , Inosina/metabolismo , Hipoxantina/metabolismo , Camundongos Endogâmicos C57BL , Adenina/metabolismo , Linhagem Celular Tumoral , Feminino
2.
Nat Commun ; 13(1): 2698, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577785

RESUMO

Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.


Assuntos
Nucleotídeos de Purina , Serina , Carbono , Movimento Celular , Purinas , Serina/metabolismo
3.
Nat Metab ; 3(4): 571-585, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833463

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADP+) is vital to produce NADPH, a principal supplier of reducing power for biosynthesis of macromolecules and protection against oxidative stress. NADPH exists in separate pools, in both the cytosol and mitochondria; however, the cellular functions of mitochondrial NADPH are incompletely described. Here, we find that decreasing mitochondrial NADP(H) levels through depletion of NAD kinase 2 (NADK2), an enzyme responsible for production of mitochondrial NADP+, renders cells uniquely proline auxotrophic. Cells with NADK2 deletion fail to synthesize proline, due to mitochondrial NADPH deficiency. We uncover the requirement of mitochondrial NADPH and NADK2 activity for the generation of the pyrroline-5-carboxylate metabolite intermediate as the bottleneck step in the proline biosynthesis pathway. Notably, after NADK2 deletion, proline is required to support nucleotide and protein synthesis, making proline essential for the growth and proliferation of NADK2-deficient cells. Thus, we highlight proline auxotrophy in mammalian cells and discover that mitochondrial NADPH is essential to enable proline biosynthesis.


Assuntos
Proliferação de Células , Mitocôndrias/metabolismo , NADP/metabolismo , Prolina/biossíntese , Animais , Ciclo Celular/genética , Humanos , Camundongos , Camundongos Knockout , Consumo de Oxigênio , Pâncreas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Circulation ; 140(7): 566-579, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31177839

RESUMO

BACKGROUND: The unfolded protein response plays versatile roles in physiology and pathophysiology. Its connection to cell growth, however, remains elusive. Here, we sought to define the role of unfolded protein response in the regulation of cardiomyocyte growth in the heart. METHODS: We used both gain- and loss-of-function approaches to genetically manipulate XBP1s (spliced X-box binding protein 1), the most conserved signaling branch of the unfolded protein response, in the heart. In addition, primary cardiomyocyte culture was used to address the role of XBP1s in cell growth in a cell-autonomous manner. RESULTS: We found that XBP1s expression is reduced in both human and rodent cardiac tissues under heart failure. Furthermore, deficiency of XBP1s leads to decompensation and exacerbation of heart failure progression under pressure overload. On the other hand, cardiac-restricted overexpression of XBP1s prevents the development of cardiac dysfunction. Mechanistically, we found that XBP1s stimulates adaptive cardiac growth through activation of the mechanistic target of rapamycin signaling, which is mediated via FKBP11 (FK506-binding protein 11), a novel transcriptional target of XBP1s. Moreover, silencing of FKBP11 significantly diminishes XBP1s-induced mechanistic target of rapamycin activation and adaptive cell growth. CONCLUSIONS: Our results reveal a critical role of the XBP1s-FKBP11-mechanistic target of rapamycin axis in coupling of the unfolded protein response and cardiac cell growth regulation.


Assuntos
Proliferação de Células/fisiologia , DNA Recombinante/biossíntese , Miócitos Cardíacos/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Proteína 1 de Ligação a X-Box/biossíntese , Adolescente , Adulto , Animais , Animais Recém-Nascidos , Células Cultivadas , DNA Recombinante/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Proteína 1 de Ligação a X-Box/genética , Adulto Jovem
6.
BMC Genomics ; 12: 423, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854623

RESUMO

BACKGROUND: Phloem-feeding aphids deprive plants of assimilates, but mostly manage to avoid causing the mechanical tissue damage inflicted by chewing insects. Nevertheless, jasmonate signalling that is induced by infestation is important in mediating resistance to phloem feeders. Aphid attack induces the jasmonic acid signalling pathway, but very little is known about the specific impact jasmonates have on the expression of genes that respond to aphid attack. RESULTS: We have evaluated the function that jasmonates have in regulating Arabidopsis thaliana responses to cabbage aphid (Brevicoryne brassicae) by conducting a large-scale transcriptional analysis of two mutants: aos, which is defective in jasmonate production, and fou2, which constitutively induces jasmonic acid biosynthesis. This analysis enabled us to determine which genes' expression patterns depend on the jasmonic acid signalling pathway. We identified more than 200 genes whose expression in non-challenged plants depended on jasmonate levels and more than 800 genes that responded differently to infestation in aos and fou2 plants than in wt. Several aphid-induced changes were compromised in the aos mutant, particularly genes connected to regulation of transcription, defence responses and redox changes. Due to jasmonate-triggered pre-activation of fou2, its transcriptional profile in non-challenged plants mimicked the induction of defence responses in wt. Additional activation of fou2 upon aphid attack was therefore limited. Insect fitness experiments revealed that the physiological consequences of fou2 mutation contributed to more effective protection against B. brassicae. However, the observed resistance of the fou2 mutant was based on antibiotic rather than feeding deterrent properties of the mutant as indicated by an analysis of aphid feeding behaviour. CONCLUSIONS: Analysis of transcriptional profiles of wt, aos and fou2 plants revealed that the expression of more than 200 genes is dependent on jasmonate status, regardless of external stimuli. Moreover, the aphid-induced response of more than 800 transcripts is regulated by jasmonate signalling. Thus, in plants lacking jasmonates many of the defence-related responses induced by infestation in wt plants are impaired. Constant up-regulation of jasmonate signalling as evident in the fou2 mutant causes reduction in aphid population growth, likely as a result of antibiotic properties of fou2 plants. However, aos mutation does not seem to affect aphid performance when the density of B. brassicae populations on plants is low and aphids are free to move around.


Assuntos
Afídeos/fisiologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Transdução de Sinais , Animais , Arabidopsis/genética , Comportamento Alimentar , Perfilação da Expressão Gênica , Herbivoria , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA