Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(12): e2205656, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808494

RESUMO

Three-dimensional (3D) bioprinting technology offers great potential in the treatment of tissue and organ damage. Conventional approaches generally rely on a large form factor desktop bioprinter to create in vitro 3D living constructs before introducing them into the patient's body, which poses several drawbacks such as surface mismatches, structure damage, and high contamination along with tissue injury due to transport and large open-field surgery. In situ bioprinting inside a living body is a potentially transformational solution as the body serves as an excellent bioreactor. This work introduces a multifunctional and flexible in situ 3D bioprinter (F3DB), which features a high degree of freedom soft printing head integrated into a flexible robotic arm to deliver multilayered biomaterials to internal organs/tissues. The device has a master-slave architecture and is operated by a kinematic inversion model and learning-based controllers. The 3D printing capabilities with different patterns, surfaces, and on a colon phantom are also tested with different composite hydrogels and biomaterials. The F3DB capability to perform endoscopic surgery is further demonstrated with fresh porcine tissue. The new system is expected to bridge a gap in the field of in situ bioprinting and support the future development of advanced endoscopic surgical robots.


Assuntos
Bioimpressão , Robótica , Animais , Suínos , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Alicerces Teciduais/química
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109670, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349450

RESUMO

The purpose of this research is to investigate the effect of different oxidation degrees and volume ratios of components on the physical properties and biocompatibility of an in situ cross-linking chitosan-hyaluronic acid-based hydrogel for skin wound healing applications. Carboxymethyl groups (-CH2COOH) were introduced to the polymer chain of chitosan, producing N,O - Carboxymethyl Chitosan (NOCC). Hyaluronic acid was oxidized to obtain aldehyde hyaluronic acid (AHA) with three oxidation degrees (AHA40, AHA50 and AHA60). The gelation was induced by forming Schiff base linkage between aldehyde groups of AHA and amino groups of NOCC. Then, the polysaccharide derivatives were combined at three NOCC:AHA volume ratios (3:7, 5:5 and 7:3) to form composite hydrogels without using any additional cross-linker. FT-IR analysis, surface morphology observation and wettability test, in vitro degradation test and rheological analysis were carried out to characterize the hydrogels. Additionally, in vitro cytotoxicity and in vivo wound healing evaluations were also conducted to study the biocompatibility of the composite. Our findings showed that when increasing the volume of NOCC, the homogeneity and hydrophobicity of the resulting hydrogels were also improved and their pore walls became thicker, leading to slower degradation rate. On the other hand, when raising the oxidation degree of AHA, the hydrophilicity of the gels decreased and less time was required to form the gel matrix. Besides, the obtained in vitro and in vivo results indicated that lower oxidation degree of AHA supports cell proliferation, cell attachment and wound healing process better. It is also concluded that NOCC-AHA40 5:5 hydrogel is most suitable for skin wound healing applications since it possesses superior morphology with high uniformity, favorable pore size and suitable density along with appropriate wettability. The NOCC-AHA gel matrix is expected to be used as a delivery system for other factors and employed as an effective bio-glue in further tissue engineering applications.


Assuntos
Quitosana , Ácido Hialurônico , Hidrogéis , Pele , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/terapia , Animais , Linhagem Celular , Quitosana/química , Quitosana/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Oxirredução , Pele/lesões , Pele/metabolismo , Pele/patologia , Molhabilidade , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
3.
Biomed Res Int ; 2017: 4263762, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367442

RESUMO

Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.


Assuntos
Fibroínas/química , Seda/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Bombyx/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroínas/uso terapêutico , Congelamento , Humanos , Estrutura Secundária de Proteína , Seda/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA