Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1123227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824418

RESUMO

In the last 3 years, almost all medical resources have been reserved for the screening and treatment of patients with coronavirus disease (COVID-19). Due to a shortage of medical staff and equipment, diagnosing sleep disorders, such as obstructive sleep apnea (OSA), has become more difficult than ever. In addition to being diagnosed using polysomnography at a hospital, people seem to pay more attention to alternative at-home OSA detection solutions. This study aims to review state-of-the-art assessment techniques for out-of-center detection of the main characteristics of OSA, such as sleep, cardiovascular function, oxygen balance and consumption, sleep position, breathing effort, respiratory function, and audio, as well as recent progress in the implementation of data acquisition and processing and machine learning techniques that support early detection of severe OSA levels.

2.
Polymers (Basel) ; 12(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334042

RESUMO

This paper presents temperature-dependent properties and fire resistance of geopolymer foams made of ground basalt fibers, aluminum foaming agents, and potassium-activated metakaolin-based geopolymers. Temperature-dependent properties of basalt-reinforced geopolymer foams (BGFs) were investigated by a series of measurements, including apparent density, water absorption, mass loss, drying shrinkage, compressive and flexural strengths, XRD, and SEM. Results showed that the apparent density and drying shrinkage of the BGFs increase with increasing the treated temperature from 400 to 1200 °C. Below 600 °C the mass loss is enhanced while the water absorption is reduced and they both vary slightly between 600 and 1000 °C. Above 1000 °C the mass loss is decreased rapidly, whereas the water absorption is increased. The compressive and flexural strengths of the BGFs with high fiber content are improved significantly at temperatures over 600 °C and achieved the maximum at 1200 °C. The BGF with high fiber loading at 1200 °C exhibited a substantial increase in compressive strength by 108% and flexural strength by 116% compared to that at room temperature. The enhancement in the BGF strengths at high temperatures is attributed to the development of crystalline phases and structural densification. Therefore, the BGFs with high fiber loading have extraordinary mechanical stability at high temperatures. The fire resistance of wood and steel plates has been considerably improved after coating a BGF layer on their surface. The coated BGF remained its structural integrity without any considerable macroscopic damage after fire resistance test. The longest fire-resistant times for the wood and steel plates were 99 and 134 min, respectively. In general, the BGFs with excellent fire resistance have great potential for fire protection applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA