Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 363: 142785, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972463

RESUMO

In this study, we investigated the degradation of the flame retardant tetrabromobisphenol A (TBBPA) using platinized tungsten oxide (Pt/WO3), synthesized via a simple photodeposition method, under visible light. The results of degradation experiments show a significant enhancement in TBBPA degradation upon surface platinization of WO3, with the degradation rate increasing by 13.4 times compared to bare WO3. The presence of Pt on the WO3 surface stores conduction band electrons, which facilitates the two-electron reduction of oxygen and enhances the production of valence band holes (hVB+) and hydroxyl radicals (●OH). Both hVB+ and ●OH are significantly involved in the degradation of TBBPA in the visible light-irradiated Pt/WO3 system. This was verified through fluorescence spectroscopy employing coumarin as a chemical probe and oxidizing species-quenching experiments. The analysis of degradation products and their toxicity assessment demonstrate that the toxicity of TBBPA-contaminated water is significantly reduced after Pt/WO3 photocatalysis. The degradation rate of TBBPA increased with increasing Pt/WO3 dosage, reached an optimum at a Pt content of 0.5 wt%, but decreased with increasing TBBPA concentration. The decrease in degradation efficiency of Pt/WO3 was minor, both in the presence of various anions and after repeated use. This study proposes that Pt/WO3 is a viable photocatalyst for the degradation of TBBPA in water under visible light.


Assuntos
Retardadores de Chama , Luz , Óxidos , Bifenil Polibromatos , Tungstênio , Tungstênio/química , Óxidos/química , Bifenil Polibromatos/química , Catálise , Poluentes Químicos da Água/química , Platina/química , Fotólise , Processos Fotoquímicos , Oxirredução
2.
J Phys Chem A ; 127(12): 2830-2838, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36919929

RESUMO

The abiotic mechanism of molecular iodine (I2) production from iodate (IO3-) remains largely unknown. Here, we demonstrate the production of I2 in the presence of IO3- and organic compounds in ice. When the solution containing IO3- (100 µM) and furfuryl alcohol (100 µM) at pH 3.0 was frozen at -20 °C, 13.1 µM of I2 was produced with complete degradation of furfuryl alcohol after 20 min. However, there was little change in the IO3- and furfuryl alcohol concentrations in water at 25 °C. The production of I2 in ice is due to the freeze concentration effect, which induces the accumulation of IO3-, furfuryl alcohol, and protons in the ice grain boundaries. This behavior facilitated the production of I2 via a redox reaction between IO3- and organic compounds. The production of I2 increased with increasing furfuryl alcohol concentration and decreasing pH. However, freezing temperature had a minor effect on the maximum production of I2. The production of I2 is highly dependent on the type of organic compounds. It was higher for organic compounds with higher electron-donating properties. This study suggests a new mechanism for I2 production, which is helpful for predicting precisely the atmospheric I2 budget in cold regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA